Skip to main content

Table 2 Segmentation accuracy of different semantic segmentation networks for Cabbage Seedling roots

From: Swin-Unet++: a study on phenotypic parameter analysis of cabbage seedling roots

Framework

Backbone

Acc↑(%)

mIoU↑(%)

Kappa↑(%)

Dice↑(%)

Params↓

(M)

Flops↓

(G)

mDT↓

(ms)

Upernet

ResNet-101

97.62

84.12

87.65

90.60

93

513

27.2

DeeplabV3+

Xception-65

97.49

83.47

87.02

90.13

46

191

25.3

Ocrnet

ResNet-101

97.48

83.31

83.89

90.02

45

162

62.4

FCN

HRNet-48

97.59

84.29

87.64

90.71

66

94

61.6

PSPnet

ResNet-101

97.62

83.75

87.54

90.34

87

343

26.0

Segnet

VGG-16

97.73

84.62

88.18

90.99

30

170

9.0

CCnet

ResNet-101

97.63

84.08

87.63

90.56

67

278

27.0

Unet

VGG-16

97.91

85.61

89.13

91.69

14

124

7.3

Unet++

DenseNet

97.93

85.77

89.26

91.79

8.3

119

13.0

Unet+++

DenseNet

97.82

85.10

88.63

91.29

27

792

10.7

Segformer

Transformer

97.61

82.95

87.02

89.69

85

996

58.9

SwinUnet++

Swintransformer

98.19

86.69

90.37

92.38

60

354

29.5