Skip to main content

Table 3 Comparison of other state-of-the-art models on the open-source datasets

From: DWTFormer: a frequency-spatial features fusion model for tomato leaf disease identification

Datasets

References

Year

Samples

Models

Accuracy/%

AI Challenger 2018

[38]

2024

50000

ERCP-Net

86.21

[39]

2021

35861

Inception-ResNet-v2

86.10

[40]

2022

35861

ConvViT

86.83

[41]

2021

35861

DECA_ResNet

86.35

[42]

2023

36379

ResNet101+attention

87.11

–

–

35861

DWTFormer

96.18

PlantVillage

[43]

2024

54306

TC-MRSN

99.59

[44]

2023

54306

Dise-Efficient

99.71

[40]

2022

54306

ConvViT

99.84

[41]

2021

54306

DECA_ResNet

99.74

[42]

2023

54306

ResNet101+attention

99.82

–

–

54306

DWTFormer

99.89

  1. The best accuracy is highlighted in bold