Skip to main content

Table 7 Comparison of classification experiments

From: Dual discriminator GAN-based synthetic crop disease image generation for precise crop disease identification

Model

Evaluation scores

 

Augmentation type

Precision

Recall

F1-score

VGG16

NA

84.5

83.78

83.61

CA

92.57

92.44

92.42

FDIT

92.91

92.89

92.86

FHWD

93.83

93.78

93.86

GoogleNet

NA

91.48

91.33

91.26

CA

96.72

96.67

96.66

FDIT

97.04

96.89

96.89

FHWD

97.62

97.56

97.56

ResNet18

NA

89.49

89.33

89.23

CA

93.93

93.78

93.75

FDIT

94.5

94.44

94.4

FHWD

95.38

95.33

95.32

SEResNet18

NA

86.82

86.44

86.22

CA

92.98

92.89

92.78

FDIT

93.9

93.56

93.48

FHWD

94.99

94.89

94.87

PreactReSNet18

NA

88.51

88.22

88.15

CA

93.86

93.78

93.75

FDIT

94.35

94.22

94.21

FHWD

95.25

95.11

95.1

Vision transformer

NA

93.96

93.78

93.75

 

CA

95.51

95.11

95.1

 

FDIT

95.29

95.11

95.11

 

FHWD

95.54

95.33

95.33

Swin tansformer

NA

90.78

90.44

90.42

 

CA

94.16

94

93.99

 

FDIT

94.86

94.67

94.63

 

FHWD

95.37

95.11

95.07

  1. The best results are shown in bold
  2. Here and in Table 7, NA No augmentation; CA Conventional augmentation