Skip to main content

Table 11 ANOVA on RMSE of various model

From: GrainNet: efficient detection and counting of wheat grains based on an improved YOLOv7 modeling

(a)Input summary

Model

Count

Mean

Std

95% CI

GrainNet

5

20.53126

5.41103

(15.78828, 25.27423)

YOLOv7

5

30.14253

4.71887

(26.00625, 34.27880)

YOLOv8

5

23.19211

4.15189

(19.55282, 26.83140)

FasterRCNN

5

57.94406

7.60620

(51.27693, 64.61119)

YOLOv5

5

21.38524

1.63922

(19.94841, 22.82208)

(b)ANOVA result

Source of Variation

SS

df

MS

F Stat

P-value

F crit

Between Groups

4945.33610

4

1236.33402

38.23916

4.20808E-09

2.86608

Within Groups

646.63247

20

32.33162

-

-

-

Total

5591.96856

24

-

-

-

-

(c)Post Hoc Analysis

 

Model compared with GrainNet

Difference of means

LSD

Lower-bound

Upper-Bound

 

YOLOv7

-9.61127

61.74290

-71.35417

52.13162

 

YOLOv8

-2.66085

61.74290

-64.40375

59.08204

 

FasterRCNN

-37.41280

61.74290

-99.15570

24.33010

 

YOLOv5

-0.85399

61.74290

-62.59689

60.88891

 
  1. Note: 95% CI:95% Confidence Interval. SS: Sum of Squares. df: degrees of Freedom. MS: Mean Square. F Stat: F-statistic. P-value: Probability Value. F crit: F Critical Value. LSD: Least Significant Difference