Skip to main content

Table 9 ANOVA on R2 of various models

From: GrainNet: efficient detection and counting of wheat grains based on an improved YOLOv7 modeling

(a)Input summary

Model

Count

Mean

Std

95% CI

GrainNet

5

0.92077

0.02510

(0.89877, 0.94277)

YOLOv7

5

0.82995

0.01901

(0.81328, 0.84661)

YOLOv8

5

0.89953

0.01610

(0.88541, 0.91364)

FasterRCNN

5

0.36907

0.03427

(0.33903, 0.39910)

YOLOv5

5

0.91276

0.00687

(0.90674, 0.91878)

(b)ANOVA result

Source of Variation

SS

df

MS

F Stat

P-value

F crit

Between Groups

1.11442

4

0.27860

450.78316

2.74889E-19

2.86608

Within Groups

0.01236

20

0.00062

-

-

-

Total

1.12678

24

-

-

-

-

(c)Post Hoc Analysis

 

Model compared with GrainNet

Difference of means

LSD

Lower-bound

Upper-Bound

 

YOLOv7

0.09082

0.92686

-0.83603

1.01768

 

YOLOv8

0.02125

0.92686

-0.90561

0.94810

 

FasterRCNN

0.55171

0.92686

-0.37515

1.47856

 

YOLOv5

0.00801

0.92686

-0.91885

0.93487

Â