Skip to main content

Table 10 Comparison of PFLO with state-of-the-art object detection models

From: PFLO: a high-throughput pose estimation model for field maize based on YOLO architecture

Models

Backbone

Approach

P (%)

R (%)

mAP50 (%)

mAP50 - 95 (%)

Inference time (ms)

Faster R-CNN

ResNet101 + FPN

Two-stage

76.1

80.5

76.1***

41.3***

89.6

YOLOv5x

CSPDarknet

Single-stage

85.6

83.5

90.2*

60.9***

18.3

YOLOv6x

CSPDarknet

Single-stage

83.0

82.0

87.9***

58.3***

17.5

YOLOv8x

CSPDarknet

Single-stage

85.5

84.3

90.4*

62.0***

18.6

YOLOv9e

CSPDarknet

Single-stage

85.9

85.1

90.7

63.6*

16.7

YOLOv10x

CSPDarknet

Single-stage

86.2

85.0

91.2

63.3*

23.7

YOLO11x

CSPDarknet

Single-stage

86.5

85.0

91.2

62.7**

15.9

PFLO

CSPDarknet

Single-stage

86.8 ± 0.5

86.2 ± 0.8

91.6 ± 0.5

66.0 ± 1.8

24.7

  1. Bold values indicate the best results in each comparison
  2. *p < 0.05, **p < 0.01, ***p < 0.001 (compared to PFLO, Welch's t-test)