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METHODOLOGY

A method for automatic segmentation 
and splitting of hyperspectral images 
of raspberry plants collected in field conditions
Dominic Williams1* , Avril Britten1, Susan McCallum2, Hamlyn Jones3,4, Matt Aitkenhead2, Alison Karley2, 
Ken Loades2, Ankush Prashar5 and Julie Graham2

Abstract 

Hyperspectral imaging is a technology that can be used to monitor plant responses to stress. Hyperspectral images 
have a full spectrum for each pixel in the image, 400–2500 nm in this case, giving detailed information about the 
spectral reflectance of the plant. Although this technology has been used in laboratory-based controlled lighting 
conditions for early detection of plant disease, the transfer of such technology to imaging plants in field conditions 
presents a number of challenges. These include problems caused by varying light levels and difficulties of separating 
the target plant from its background. Here we present an automated method that has been developed to segment 
raspberry plants from the background using a selected spectral ratio combined with edge detection. Graph theory 
was used to minimise a cost function to detect the continuous boundary between uninteresting plants and the area 
of interest. The method includes automatic detection of a known reflectance tile which was kept constantly within 
the field of view for all image scans. A method to split images containing rows of multiple raspberry plants into 
individual plants was also developed. Validation was carried out by comparison of plant height and density measure-
ments with manually scored values. A reasonable correlation was found between these manual scores and measure-
ments taken from the images  (r2 = 0.75 for plant height). These preliminary steps are an essential requirement before 
detailed spectral analysis of the plants can be achieved.
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Background
Plant breeders are constantly striving to improve crop 
productivity through the breeding of plants with desir-
able agronomic traits that are also tolerant of abiotic 
stresses such as drought, mineral deficiency or heat stress 
and biotic stresses caused by pests and diseases. Rasp-
berry is a perennial crop species grown widely in Europe 
and North America, and raspberry production faces a 
number of specific challenges. In terms of biotic stress, 
the spread of root rot disease caused by Phytophthora 
rubi has devastated many growers’ plantations and, once 
present, there is no effective treatment. The development 
of resistant raspberry varieties is therefore a key priority 

for breeders and a molecular markers breeding strategy 
is currently underway [1, 2]. Other challenges include 
combating insect pests, particularly root-feeding vine 
weevil larvae, and producing quality fruit [3, 4]. Recently, 
developmental disorders have also affected raspberry 
yields with increased incidence of crumbly fruit [4], lack 
of evenness and variable timings of bud break, and incon-
sistency in flowering and fruiting [5, 6]. Therefore, resil-
ience in new variety development is essential to ensure 
future success in the raspberry industry.

Breeders therefore require tools for detecting the bio-
chemical, physiological, and developmental responses 
to such stresses. These ‘phenotyping’ tools need to be 
capable of high-throughput screening of the huge num-
ber of plants that are typically generated and character-
ised as part of plant breeding programmes, whether for 
the mapping of quantitative trait loci (QTL) or for direct 
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selection, and they need to be applicable in the field, 
rather than in controlled environments alone [7–9]. 
Sensors that detect reflected light from plants provide a 
technology that could satisfy these requirements. A wide 
range of sensors is now available for field use [10, 11]; 
these are most efficiently deployed on mobile field plat-
forms [12, 13], while lighter sensors may also be deployed 
on unmanned aerial vehicles (UAVs) [14–16].

Among the many sensors available, there has been 
particular interest in the past few years in hyperspectral 
sensing of plant reflectance in the visible (400–700 nm), 
near infrared (NIR, 700–1000  nm) and the shortwave 
infrared (SWIR, 1000–2500  nm). This makes use of 
characteristic features of the reflectance spectrum that 
depend on biochemical or structural features of plant 
leaves and can be used for quantification of biochemi-
cal and physiological responses [17–19]. The power of 
hyperspectral remote sensing for detection and char-
acterisation of plant responses to stress has been amply 
demonstrated by using in-field non-imaging spectroradi-
ometry for the characterisation of traits as diverse as leaf 
biochemical composition [17], leaf water status [20] and 
responses to biotic stresses, however, the use of hyper-
spectral imagery has potential to greatly refine the power 
of this technique.

This study reports the development of an image pro-
cessing method to support the application of a novel 
field phenotyping platform that incorporates two hyper-
spectral scanners: (1) SWIR scanner covering region 
1000–2500 nm; and (2) a visible and near infra-red scan-
ner (VNIR) covering the region 400–1000  nm with a 
combined capacity of recording 400 different wavelength 
bands. The scanners were mounted on a trolley pulled 
behind a tractor in such a way as to provide vertical scans 
of the lateral view of the plant canopy. Individual scans 
as the trolley moved forward were combined in a push-
broom manner [21] to generate images of the lateral 
aspect of the plant row. A number of image analysis steps 
are required to extract the relevant data from the images 
for use in plant phenotyping.

Unfortunately, the shift to imagery as a phenotyping 
tool generates enormous amounts of data, necessitating 
the development of automated image analysis and sta-
tistical techniques for the required data reduction and 
synthesis [22, 23]. Image analysis techniques range from 
those that retain spatial information about the patterns of 
spectral variation (of particular interest for plant diseases 
or mineral disorders where there may be characteristic 
patterns of leaf colour [24, 25]) to the straightforward 
extraction of average spectra for the class of plant mate-
rial of interest. The use of this latter approach is equiva-
lent to the use of non-imaging spectrometers [26], but 
has the added power of eliminating error caused by those 

areas of the sensor field of view that do not correspond 
to the material of interest (i.e. plant leaf surfaces or even 
‘sunlit’ leaf surfaces alone). Much previous work using 
spectral sensing for plant phenotyping has been con-
ducted in highly controlled conditions [23], or focusses 
on relatively few wavelengths from red, green, blue (RGB) 
or multispectral sensors [27]. While growing plants in 
growth chambers or glasshouses allows environmental 
conditions to be closely controlled, it is important that 
phenotyping methods are applicable to the field con-
ditions experienced by plants in a commercial setting. 
Imaging in field conditions produces additional chal-
lenges including the rapidly varying light exposure, influ-
ence of wind turbulence and the need to distinguish the 
target plants from a complex and varying background: in 
the field we are unable to move plants to an ideal position 
for imaging.

This study focusses on the critical step in image analy-
sis of segmenting raw images to separate data linked to 
the leaf material of interest from that linked to other 
material such as stems, soil or other background fea-
tures. Segmentation approaches for hyperspectral images 
can be split into two categories: those that attempt a 
pixel level classification based on the spectral signature 
of each pixel; and object based methods where location 
of the pixels is taken into account [28, 29]. Pixel based 
approaches have been commonly used for remote sens-
ing data from either satellite or aircraft mounted scan-
ners. These work well in situations with a variety of pixel 
classes that are well defined but where spatial resolution 
is poor. As the spatial resolution of hyperspectral imagers 
has improved, object based segmentation methods have 
become more common. These exploit information about 
the location of pixels in images to improve segmentation 
accuracy, detecting continuous objects that can then be 
allocated to a particular class. For field based systems, the 
limited number of potential object classes and high spa-
tial resolution provides additional options for segmenta-
tion of image data.

The aim of this study was to develop an automatic 
method to segment the hyperspectral images identifying 
and labelling plants of interest and detecting reflectance 
standard. The approach chosen was to produce a single 
channel image from a combination of wavelength bands 
to segment important objects in the image. One major 
advantage of this approach is that dealing with only a few 
wavelength bands, reduces the image size and memory 
requirements for the image processing. It also allows 
generic machine vision techniques that are not specific to 
hyperspectral imaging to be used. The objectives were to 
overcome the main challenges associated with (1) detec-
tion of the white reference tile and (2) the accurate split-
ting of the image into individual plants.
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Methods
Plants in the field
A replicated mapping population of 188 offspring with 
parents of Glen Moy and Latham raspberry varieties 
was planted at a field site at the James Hutton Institute, 
Dundee, UK. The advantage of using a mapping popula-
tion for this work is that the image data can be related 
to molecular markers for traits via QTL analysis. Several 
linkage maps have been developed for traits of interest 
using this mapping population [2–5, 30, 31]. The plants 
were subject to two different biotic stresses (root rot and 
vine weevil, together with a stress-free control) and three 
different irrigation levels (control, drought, overwatered). 
The root rot plots were located on a site with known 
infection. Vine weevil plots were infested with eggs pro-
duced from live cultures held at the James Hutton Insti-
tute. Due to the extra space the need for biosecurity 
containment, the vine weevil plot only had two different 
irrigation levels. These treatments were combined to give 
eight different treatment combinations. Two replicates of 
each plant genotype were assigned to random positions 
within each block. The plots were uncovered in the field 
so control of water levels was limited by weather condi-
tions. The plots were weeded and the raspberry plants 
were trained to grow on wires held up by wooden posts 
in line with standard practice for growing raspberry.

Imaging set up
The images were acquired using two scanners (see Fig. 1). 
Both of these scanners worked on a pushbroom line 

scanning method acquiring a single vertical line of an 
image at a time. The scanners were moved horizontally 
to generate a 2D hyperspectral image comprising multi-
ple vertical image scans. The VNIR scanner was manu-
factured by Gilden Photonics, and acquired images in 
the wavelength range of 400–896  nm. Binning (4×) was 
carried out during the imaging process which produced 
178 wavelength bands in the 400–896 nm range and 402 
vertical pixels covering a swath of approx. 1.2  m at the 
target distance. The SWIR scanner was manufactured by 
Specim, with a wavelength range of 895–2506  nm. This 
scanner was used at full resolution giving 278 wavelength 
bands within that region and 378 vertical pixels covering 
a swath of 1.2 m at the target range. To discriminate tar-
get plants in the row from plants in rows behind the target 
array, we suspended a cardboard sheet behind the plants 
(see Fig. 2). A spectral reference tile was attached to this 
cardboard sheet so that it was continuously in the scanner 
field of view, thus allowing calibration against changing 
light levels. Two 400  W RS components halogen flood-
lights were mounted on the platform just above the scan-
ners to provide illumination at similar orientation to the 
scanners; these lights were used at all times, and allowed 
imaging to proceed in cloudy conditions when natural 
irradiance in the short wave infrared region is very low. 
Adding in artificial lights does add complexity to the spec-
trum detected as the spectra become a mixture of natu-
ral and artificial light. In bands with high atmospheric 
absorbance, light will mainly be from artificial lights.

The SWIR and VNIR scanners were mounted at the 
same height with a 30  cm horizontal offset between 
them. They were oriented to cover the same area of the 
studied plants. The images from each scanner were ana-
lysed independently rather than attempting a registra-
tion of the two images. Registration was not attempted 
as it would add in an extra source of potential error to 
the data analysis. A slightly differing vertical resolution 
would mean any registered results would need to be 
interpolated. The horizontal offset between the two scan-
ners meant there was a time delay between imaging the 
same plant by the two different scanners adding in poten-
tial error on any days with sufficient wind speed to dis-
turb the plants.

Imaging protocol
The plants were imaged in 50 m rows of 48 plants every 
2  weeks throughout the 2016 growing season (May–
September). At the start of each row, the white refer-
ence tile was imaged without any plants in the image. 
The exposure of the scanners was then adjusted so that 
the white reference produced values between 50 and 
90% maximum intensity of the scanner to avoid over 
or under exposure in the images. The reflectance of the 

Fig. 1 View of scanner set up, wires, power supply and frame to hold 
background are not shown for clarity
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white reference was much higher than that of plants in 
the visible region where light intensity is highest, so any 
problems with over exposure were encountered on the 
reference tile rather than the plants. Once the exposure 
had been set, the scanners were all switched on and the 
tractor towed the imaging platform (Fig. 3) down the row 
at a constant velocity of 2.7  m  s−1, with the cardboard 
background held stable by a person walking alongside. 
The exposure was rechecked and adjusted at the start of 
each row of imaging.

Image preprocessing
Dark current was removed from the SWIR images by 
subtracting the spectrum acquired when no light was 

reaching the detector from the spectrum returned in 
each image. The dark current spectrum is unique to each 
vertical pixel within the image. The dark current for the 
VNIR scanner was much smaller and removal was not 
necessary to achieve good quality images.

The imaging method (described above) ensured that 
all plants of interest were contained in the images. The 
first step of image processing involved manually crop-
ping the ends of each image to remove non-target image 
data, which required the user to click on the image, at 
points indicating the start and end of the row of plants. A 
three band true colour representation of images was used 
for this purpose. No further manual intervention was 
required for image processing.

Further processing of image data differed slightly 
between the VNIR and SWIR scanners.

Automatic plant detection
VNIR
Discrimination of plant leaf material from background 
pixels is a relatively simple task in the visible and near 
infra-red region. A fixed threshold was applied to the 
normalised difference vegetation index (NDVI) values 
[32] based on visual inspection of a number of images. 
NDVI was defined as NDVI  =  (IR  −  red)/(IR  +  red) 
where red was defined as the mean intensity between 
the wavelengths, 650 and 680  nm, and IR as the mean 
intensity between the wavelengths, 710 and 740 nm. An 

Fig. 2 Rear view of platform showing target plants

Fig. 3 Photo of imaging platform in action
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example NDVI image can be seen in Fig. 4. After apply-
ing the NDVI threshold, the image was eroded using a 
3 × 3 cross shaped structural element [33]. This has the 
effect of removing any pixel from the detected plant if 
one of its immediate neighbours has not been classified 
as a plant. This removes the few stray pixel detections 
and any mixed pixels encountered on the edge of leaves.

The space between the rows of raspberry plants was 
grassed, which means that grass appeared at the bot-
tom of each of the images. Our initial segmentation 
included this grass as part of the plant. An approach 
was developed to remove this non-target plant material 
by detecting the bottom of the cardboard background. 
Graph theory was used to find an edge across the NDVI 
image. Graph based segmentation has been used to solve 
a number of different image segmentation problems [34], 
including both plant segmentation problems [35] and 
much wider applications [36, 37]. The main advantages of 
this technique are the low computational power required 
and the lack of need for training data.

Graph theory segmentation works by using a cost func-
tion for each pixel then finding the shortest path across 
the image to minimise this function. The cost function 
used here was:

where  gy is the vertical gradient of the NDVI image, I(x) is 
the mean intensity of a vertical slice of the image at point 
x and C is the cost function to be minimised [34]. The 
additional brightness penalty was added to reduce the 
effect of the cost penalty in the situations where there are 
plants which hide the boundary between the cardboard 

C = e−I(x)(1− gy)

and grass. Where the cost penalty is zero, a straight hori-
zontal path would be produced.

The cost function was minimised using the following 
expression

where t(x, y) is the cost to reach point (x, y), C(x, y) is the 
cost function giving cost at point (x, y), x is the horizontal 
direction index and y is the vertical direction index and m 
is the image height. �ver is a vertical cost penalty added to 
favour selection of lines with limited vertical movement.

The area below the boundary found was removed from 
detected plant material.

SWIR
Discrimination of plant material is more challenging in 
the SWIR region of the spectrum. A method that exploits 
the different shape of the water absorption regions of the 
spectrum in the plant and background was developed. A 
normalised difference ratio between the intensity at 1375 
and 1411  nm was found to discriminate between plant 
and background. A grayscale image, see Fig. 5, was pro-
duced using the following equation:

where  I1375 is the mean intensity of the image for 3 bands 
centred at 1375 nm and  I1411 is the mean intensity of the 
image for 3 bands centred at 1411  nm. Otsu’s method 

t(x, y) =
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otherwise

Ndif = (I1375 − I1411)/(I1375 + I1411)

Fig. 4 Example image showing segmentation steps for VNIR data. Top left is true colour representation of data. Centre left shows NDVI image. 
Bottom left shows segmented plant location marked in red on NDVI image. The top right is the cost function that is minimised to find the bottom 
boundary. Centre right is the boundary marked on NDVI image and bottom right is final segmentation of plants with grass removed marked on 
original true colour image
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[38] was applied to find a threshold to best segment the 
image.

The problem of the removal of grass from the fore-
ground is also presents itself in the SWIR images. Here a 
different approach was used because attempts to replicate 
the method used in the VNIR images did not produce 
good results, due to noise in the SWIR images with a hor-
izontal consistency that persisted even after dark current 
removal; this noise created false edges that were picked 
up frequently. Instead, a fixed part of the bottom of the 
image was removed. Although this resulted in removal of 
a larger section of the image than the VNIR method, the 
approach ensured the grass was reliably removed.

Automatic detection of white reference
A method was developed for automatic detection of the 
white reference tile in each image to allow correction of 
changes in light levels between images.

VNIR
For detection of the white reference, the mean intensity 
of the spectrum between 455 and 480 nm was calculated. 
This region of the spectrum was chosen as a bright area, 
with best contrast between the white reference and sur-
rounding objects. The white reference was continuously 
in the field of view although it was obscured behind posts 

and plants for part of the images. The same method that 
was used to detect the bottom of the cardboard back-
ground was applied (described above). First, the bottom 
of the white reference was found using graph theory, with 
the same cost function as earlier, but without the inten-
sity adjustment:

where  gy is the vertical gradient of the mean intensity of 
the image and C is the cost function to be minimised. The 
same minimisation technique was used as described pre-
viously. In order to detect the top edge of the white refer-
ence, a shape function (d) was generated from the bottom 
of the white reference. This used an expected width for 
the white reference to favour detection of an edge at a 
known distance from the bottom edge. This shape func-
tion was included to give the following cost function:

where  gy is the vertical gradient of the mean intensity 
image, λdist is the distance weighting term, d is the shape 
function and C is the cost function to be minimised. 
This cost function was then minimised to find the lowest 
weighted path across the image.

Following the initial detection of the white refer-
ence between the two bounding lines, further image 

C = 1− gy

C = 1− gy + �dist × d

Fig. 5 Example imaging showing SWIR image segmentation. Top image is false colour image of SWIR data. Centre image is a normalised differ-
ence image used to detect plants, where it is clear that plants can be clearly distinguished from the background, although a fainter signal of their 
shadows can also be seen. Bottom image shows plant segmentation marked on original false colour image within which the bottom section was 
cropped off
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corrections were carried out. In principle, the white ref-
erence was continuous across the image. In reality, the 
white reference was occluded in parts of the image by 
plant material and wooden posts.

Removal of these objects from the image was based on 
the fact that they were darker than the white reference. 
The variance of each vertical scan of the white spectrum 
was calculated. Any columns with variance twice the mean 
variance were removed, and the mean intensity of each 
column remaining was calculated. A threshold was then 
applied to remove the darkest columns, which most likely 
contained image data from leaves or wooden posts. This 
generated a mask that marked the locations of the white 
reference within the image. This method is shown in Fig. 6.

SWIR
Due to the confounding issues caused by noise in SWIR 
images, an alternative method based on finding a suit-
able threshold was used to detect the reference. The first 
step was to find suitable wavelengths that separated the 
white reference from the rest of the image. Inspection of 
the images revealed, a normalised difference of the mean 
intensity of three bands centred at 1620 and 1537 nm was 
able to differentiate the white reference (Fig. 7).

A histogram of intensity (Fig.  8) indicates three rea-
sonably well defined regions, corresponding to the white 
reference, plants and background (respectively). The first 
peak corresponds to the white reference, in order to seg-
ment this, a local minimum was found, using the point 
that included 10% of all pixels as a starting point. The 
value of the intensity at this point was used as a threshold 
to segment the image. The image was morphologically 
eroded using a cross structuring element to remove stray 

pixels and small objects that were incorrectly classified as 
white reference.

Splitting into individual plants
Individual plants in each row of the trial were separated 
by a distance of 1 m (48 plants per row), which is larger 
than commercial plantations, but facilitated the task of 
splitting image files into individual plants. Separating 
individual plants was necessary as each plant in the row 
of an image was a unique genotype in the mapping popu-
lation. Since the image was collected at a constant speed, 
the simplest approach would be to split each image into 
48 equal sized sections, with each containing a sepa-
rate plant. In practice, this approach was not robust due 
to errors caused by variation in tractor speed or plant 
growth that deviated from vertical, so a method based on 
our prior detection of plant material was used instead.

The number of pixels assigned as ‘plant’ material for 
each column was calculated. Peaks in this should corre-
spond to plants and minima should correspond to gaps 
between plants. A peak finding function was used to 
identify peaks, while enforcing a minimum distance of 
80% of the expected plant separation. The points midway 
between each peak were used to split the image into indi-
vidual plants. Any areas where plant separation was too 
large were split into multiple regions to account for any 
plants that had been missed by the peak finding method. 
The number of plants identified and the known number 
of plants in the image was matched by either merging 
small regions or splitting large regions. Finally, the split-
ting points were adjusted to identify a local minimum, in 
the number of plant pixels, corresponding to an optimum 
point for splitting the image.

Fig. 6 Example image showing white reference detection in VNIR images. Top image shows grayscale image of the mean intensity between 455 
and 480 nm and bottom image shows the detected white reference marked in red
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This method did not produce a perfect splitting of 
plants, but ensured that image splitting was as accurate 
as possible. In some cases, there was a degree of over-
lap between adjacent plants in the image, with branches 
of one bush intermingling with that of the neighbour-
ing plant, indicating that improved plant management 
and control is important to accurately split the images. 
In order to reduce the effect of this overlap, for each 

detected plant, 10% of the plant width was cropped off 
each side to exclude areas where two plants overlapped 
(see Fig. 9 for an example).

This method was applied to both VNIR and SWIR 
images.

Extracting data
Using the segmented image data, the spectrum of the 
white reference tile was used to normalise the image 
from pixel intensity values to reflectance. The image was 
divided into sections of fixed size then dividing the spec-
trum of each pixel in that section by the mean white ref-
erence spectrum from that section.

Finally, the normalised reflectance spectrum of each 
plant was extracted, together with measures of the plant 
height and mean density of the plant, using the binary 
segmented plant image. These final two measures were 
used to evaluate performance of the segmentation by 
comparison with visual scoring of the plants in each 
image for height, density and diameter.

Results and discussion
The study aimed to produce an accurate segmentation of 
individual plants from a hyperspectral image. This was 
achieved by developing a method to detect the white 
reference tile for normalising the collected data and a 
method to split the image into individual plants. Accu-
rate validation of the segmentation method is a chal-
lenging task. Although visual inspection of the results 
(example image in Fig.  10) showed good agreement 

Fig. 7 Example image showing white reference detection. Top image shows the normalised difference between 1620 and 1537 nm used to detect 
white reference, which can be seen as darker pixels in image. Bottom image shows the detected white reference marked on false colour image 
used previously in Fig. 5

Fig. 8 Histogram of image intensity for normalised difference image 
used to detect white reference. Peak on left corresponds to pixels 
belonging to white reference, peak in centre to pixels that are part 
of the back ground and peak on right to pixels mostly belonging to 
plants
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between the segmentation results and the plants quan-
titative validation of the results is more difficult because 
replicating the segmentation by hand would be time con-
suming and prone to errors. As an alternative validation 
method, manual observers classified the plants visually 
for plant height and cane density. These scores were com-
pared with the measurements of plant height and density 
obtained from the segmented images. The comparison 
was carried out over a total of 44 images containing 1440 
different plants.

An example of the mean spectrum generated from 
three neighbouring plants is shown in Fig. 11. This shows 
we are able to generate meaningful spectrum for plants 
using the method described here.

Fig. 9 Example image segmented into plant sections. Small areas of overlapping plant can be seen in centre of image that cross the lines. These 
are removed by excluding a 10% boundary on either side of the marked lines from the segmentation

Fig. 10 Example image with segmentation results marked on it. Each row should contain 12 plants but some plants are missing

Fig. 11 Example mean spectrum of three plants. Data from two 
cameras has been combined after image processing to give mean 
spectrum of plant spectrum covering both VNIR and SWIR regions
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Comparison of height measures
The sum of the three manual observer’s height scores was 
compared with the values generated from images by the 
automated segmentation method (Fig.  12), and showed 
good correlation with an  r2 value of 0.75. The extreme 
values in top left and bottom right corners are prob-
ably evidence of disagreement in plant labelling between 
manual and automatic measures.

Similarly, manual measurements of cane den-
sity showed a positive relation with mean number of 
plant pixels per plant obtained from image segmenta-
tion (Fig.  13;  r2 =  0.68). The latter value is not directly 

equivalent to plant density scores. There were a num-
ber of outliers where the automated processing failed to 
locate a plant that was detected by the manual scoring, 
showing there are improvements that could be made to 
the automated segmentation method for splitting plants 
in the image.

Although the main purpose of the imaging platform 
was not to collect plant height and density data spe-
cifically, the comparison of manual measurements with 
automated measurements for height and plant density 
provided a means of validating the methods used to 
process image data collected using the platform. Future 
work will focus on the spectrum produced by imaging. 
This requires an accurate segmentation method to ensure 
that image data provides information about the spectral 
response of the target plants, rather than the background 
or neighbouring plants. Establishing the automated 
image processing methods for segmenting and splitting 
the image data will facilitate the analysis of the plant 
reflectance spectrum and responses to a range of biotic 
and abiotic conditions.

Conclusion
The study aim and objectives were achieved by devel-
oping a method for the automatic segmentation of tar-
get plant material in hyperspectral images of raspberry 
plants and the splitting of these images into individual 
plants. This is the first time that the segmentation of 
ground based hyperspectral images of bush crops has 
been attempted. Segmentation was carried out on images 
generated from a normalised difference between particu-
lar bands. Novel bands were selected for the segmenta-
tion of SWIR images. The segmentation was carried out 
using thresholds and graph theory. A small amount of 
manual intervention was required as an initial step to 
remove irrelevant sections at the start and end of images.

The performance of this technique has been partially 
validated by comparison of manual and automated meas-
ures of plant shape. The good correlation between man-
ual and automated measurements confirmed the value of 
our segmentation method. The evaluation of segmenta-
tion performance was carried out in this way, as manual 
segmentation of the images would have being labour-
intensive and also subject to observer bias. Manual 
inspection of segmented images indicated good quality 
segmentation in all images.

This method has been developed to solve a particular 
problem encountered with imaging perennial plants in 
field plantations. Challenges of irregular plant growth and 
inconsistent lighting had to be overcome to enable the 
segmentation to succeed. Due to the relative novelty of 
using ground based hyperspectral scanners in field envi-
ronments, there are no widely applicable segmentation 

Fig. 12 Relation between plant height values obtained by 
automated segmentation of image data and visual scores 
assigned by manual observation. The fitted line has equation 
y = − 0.395 + 0.0347 × x  (r2 = 0.75)

Fig. 13 Relation between plant density values obtained by 
automated segmentation of image data and visual scores 
assigned by manual observation. The fitted line has equation 
y = 4.87 + 0.0364 × x  (r2 = 0.68)
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tools available at present. The methods described here 
have been developed with a particular imaging set-up 
in mind, although using details of the approach, other 
researchers may be able to alter and adapt the methods to 
solve their own image segmentation challenges.

This study reports development of the imaging plat-
form and associated imaging processing methods. In 
future, we aim to implement these methods in further 
work to analyse the utility of the extracted image data for 
a range of applications.
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