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Abstract 

Background: Plants demonstrate dynamic growth phenotypes that are determined by genetic and environmental 
factors. Phenotypic analysis of growth features over time is a key approach to understand how plants interact with 
environmental change as well as respond to different treatments. Although the importance of measuring dynamic 
growth traits is widely recognised, available open software tools are limited in terms of batch image processing, 
multiple traits analyses, software usability and cross-referencing results between experiments, making automated 
phenotypic analysis problematic.

Results: Here, we present Leaf-GP (Growth Phenotypes), an easy-to-use and open software application that can be 
executed on different computing platforms. To facilitate diverse scientific communities, we provide three software 
versions, including a graphic user interface (GUI) for personal computer (PC) users, a command-line interface for high-
performance computer (HPC) users, and a well-commented interactive Jupyter Notebook (also known as the iPython 
Notebook) for computational biologists and computer scientists. The software is capable of extracting multiple 
growth traits automatically from large image datasets. We have utilised it in Arabidopsis thaliana and wheat (Triticum 
aestivum) growth studies at the Norwich Research Park (NRP, UK). By quantifying a number of growth phenotypes 
over time, we have identified diverse plant growth patterns between different genotypes under several experimental 
conditions. As Leaf-GP has been evaluated with noisy image series acquired by different imaging devices (e.g. smart-
phones and digital cameras) and still produced reliable biological outputs, we therefore believe that our automated 
analysis workflow and customised computer vision based feature extraction software implementation can facilitate 
a broader plant research community for their growth and development studies. Furthermore, because we imple-
mented Leaf-GP based on open Python-based computer vision, image analysis and machine learning libraries, we 
believe that our software not only can contribute to biological research, but also demonstrates how to utilise existing 
open numeric and scientific libraries (e.g. Scikit-image, OpenCV, SciPy and Scikit-learn) to build sound plant phenom-
ics analytic solutions, in a efficient and effective way.

Conclusions: Leaf-GP is a sophisticated software application that provides three approaches to quantify growth 
phenotypes from large image series. We demonstrate its usefulness and high accuracy based on two biological appli-
cations: (1) the quantification of growth traits for Arabidopsis genotypes under two temperature conditions; and (2) 
measuring wheat growth in the glasshouse over time. The software is easy-to-use and cross-platform, which can be 
executed on Mac OS, Windows and HPC, with open Python-based scientific libraries preinstalled. Our work presents 
the advancement of how to integrate computer vision, image analysis, machine learning and software engineering 
in plant phenomics software implementation. To serve the plant research community, our modulated source code, 
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Background
Plants demonstrate dynamic growth phenotypes that 
are determined by genetic and environmental factors 
[1–3]. Phenotypic features such as relative growth rates 
(RGR), vegetative greenness and other morphological 
characters are popularly utilised by researchers to quan-
tify how plants interact with environmental changes 
(i.e. G × E) and different experimental treatments [4–6]. 
In particular, to assess the growth and development, 
growth phenotypes such as leaf area, leaf convex hull 
size and leaf numbers are considered as key measure-
ments by plant scientists [7–12], indicating the impor-
tance of scoring differences of growth related traits 
between experiments. To accomplish the above tasks, 
high quality image-based growth data need to be col-
lected from many biological replicates over time [13, 
14], which is then followed by manual, semi-automated, 
or automated trait analysis [15, 16]. However, the cur-
rent bottleneck lies in how to extract meaningful results 
from the increasing image-based data, effectively and 
efficiently [14, 17].

To facilitate the quantification of dynamic growth 
traits, a range of imaging hardware and software have 
been developed. To demonstrate the development of this 
research domain, we summarise some representative 
tools and techniques as follows:

  • LeafAnalyser [18] uses image-processing techniques 
to measure leaf shape variation as well as record the 
position of each leaf automatically.

  • GROWSCREEN [12] quantifies dynamic seedling 
growth under altered light conditions.

  • GROWSCREEN FLUORO [19] measures leaf growth 
and chlorophyll fluorescence to detect stress toler-
ance.

  • LemnaGrid [20] integrates image analysis and rosette 
area modelling to assess genotype effects for Arabi-
dopsis.

  • Leaf Image Analysis Interface (LIMANI) [21] seg-
ments and computes venation patterns of Arabidop-
sis leaves.

  • Rosette Tracker [22] provides an open Java-based 
image analysis solution to evaluate plant-shoot phe-
notypes to facilitate the understanding of Arabidopsis 
genotype effects.

  • PhenoPhyte [23] semi-automates the quantification 
of various 2D leaf traits through a web-based soft-
ware application.

  • Depth imaging systems were used to measure 3D leaf 
areas using a segmentation algorithm, so that plants 
can be phenotyped from a top-view perspective [24].

  • OSCILLATOR [25] analyses rhythmic leaf growth 
movement using infrared photography combined 
with wavelet transformation in mature plants.

  • HPGA (a high-throughput phenotyping platform for 
plant growth modelling and functional analysis) [5], 
which produces plant area estimation and growth 
modelling and analysis to high-throughput plant 
growth analysis.

  • LeafJ [26] provides an ImageJ plugin to semi-auto-
mate leaf shape measurement.

  • Integrated Analysis Platform (IAP) [16] is an open 
framework that performs high-throughput plant 
phenotyping based on the LemnaTec system.

  • Low-cost 3D systems such as Microsoft Kinect and 
the David laser scanning system are evaluated for 
their potential applications in plant phenotyping [27].

  • Easy Leaf Area [28] uses colour-based feature to dif-
ferentiate and measure leaves from their background 
using a red calibration area to replace scale measure-
ment.

  • Phytotyping4D [29] employs a light-field camera to 
simultaneously provide a focus and a depth image 
so that distance information from leaf surface can be 
quantified.

  • Large-scale gantry system, LeasyScan [30], is able to 
assess canopy traits affecting water use based on leaf 
area, leaf area index and transpiration. The system is 
based on 3D laser scanning techniques and Pheno-
spex’s proprietary software to conduct 3D trait meas-
urements.

  • Leaf Angle Distribution Toolbox [31] is a Matlab-
based software package for quantifying leaf surface 
properties via 3D reconstruction from stereo images.

  • MorphoLeaf [32] is a plug-in for the Free-D soft-
ware to perform analysis of morphological features of 
leaves with different architectures.

  • rosettR [33] is a high-throughput phenotyping pro-
tocol for measuring total rosette area of seedlings 
grown in plates.

detailed comments, executables (.exe for Windows; .app for Mac), and experimental results are freely available at 
https://github.com/Crop-Phenomics-Group/Leaf-GP/releases.

Keywords: Growth phenotypes, Automated trait analysis, Feature extraction, Computer vision, Software engineering, 
Arabidopsis, Wheat
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  • A real-time machine learning based classification 
phenotyping framework [34] can extract leaf canopy 
to rate soybean stress severity.

  • Phenotiki [35] is an affordable system for plant phe-
notyping, integrating off-the-shelf hardware com-
ponents and easy-to-use Matlab-based software for 
phenotyping rosette-shaped plants.

While many hardware and software solutions have 
been created, the threshold for using these existing tools 
for measuring growth phenotypes is still relatively high. 
This is due to many analytic software solutions that are 
either customised for specific hardware platforms (e.g. 
LemnaTec Scanalyzer and Phenospex PlantEye), or relied 
on proprietary (LemnaTec HTS Bonit) or specialised 
software platforms (e.g. Matlab), restricting smaller or 
not well-funded laboratories to access the existing solu-
tions [22]. Hence, data annotation, phenotypic analysis, 
and results cross-referencing are still frequently done 
manually in many laboratories, which is time consuming 
and prone to errors [21].

Available open software tools are also limited in terms 
of batch processing, multiple trait analysis, and software 
usability, making automated phenotypic analysis prob-
lematic [33]. In order to provide a fully open analytics 
software framework for a broader plant research commu-
nity to measure key growth-related phenotypes, we devel-
oped Leaf-GP (Growth Phenotypes), an open-source and 
easy-to-use software solution that can be easily setup for 
analysing images captured by low-cost imaging devices. 
The software uses the community driven Python-based 
scientific and numeric libraries. After continuous devel-
opment and testing, Leaf-GP can now extract and com-
pare growth phenotypes reliably from large image series, 
including projected leaf area  (mm2), leaf perimeter (mm), 
leaf convex hull length and width (mm), leaf convex hull 
area  (mm2), stockiness (%), compactness (%), leaf num-
bers and greenness (0–255). We demonstrate its high 
accuracy and usefulness through experiments using 
Arabidopsis thaliana and Paragon wheat (a UK spring 
wheat variety). The software can be executed on main-
stream operating systems with Python and Anaconda 
distribution preinstalled. More importantly, we followed 
the open software design strategy, which means that our 
work is expandable and new functions or modules can be 
easily added to the software framework.

Methods
Applying Leaf‑GP to plant growth studies
Figure  1 illustrates how Leaf-GP was applied to quan-
tify growth phenotypes for Arabidopsis rosettes and 
Paragon wheat over time. To improve the software flex-
ibility, Leaf-GP was designed to accept both RGB (a red, 

green and blue colour model) and infrared (sensitive to 
short-wavelength infrared radiation at around 880  nm) 
images acquired by a range of low-cost devices, includ-
ing a fixed imaging platform using a Nikon D90 digital 
camera (Fig.  1a), smartphones (e.g. an iPhone, Fig.  1b), 
or a mobile version CropQuant [36] equipped with either 
a Pi NoIR (no infrared filter) sensor or an RGB sensor 
(Fig.  1c). When taking pictures, users need to ensure 
that the camera covers the regions of interest (ROI), i.e. a 
whole tray (Fig. 1d) or a pot region (Fig. 1e). Red circular 
stickers (4 mm in radius in our case) need to be applied 
to the four corners of a tray or a pot (Fig. 1b). In doing 
so, Leaf-GP can extract ROI from a given image based on 
red markers’ positions and then convert measurements 
from pixels to metric units (i.e. millimetre, mm) using 
the diameter of the marker as the scale of the image. Both 
raw and processed image data can be loaded and saved 
by Leaf-GP on personal computers (PCs), HPC, or cloud-
based computing storage (Figs. 1f, g).

As different research groups may have access to dis-
similar computing infrastructures, we developed three 
versions of Leaf-GP to enhance the accessibility of the 
software: (1) for users utilising HPC clusters, a Python-
based script was developed to perform high-throughput 
trait analysis through a command-line interface (Fig. 1h), 
which requires relevant scientific and numeric libraries 
such as SciPy [37], computer vision (i.e. the Scikit-image 
library [38] and the OpenCV library [39]), and machine 
learning libraries (i.e. the Scikit-learn library [40]) pre-
installed on the clusters; (2) for users working on desk-
top PCs, a GUI-based software version was developed to 
incorporate batch image processing, multi-traits analy-
ses, and results visualisation (in CSV format, comma-
separated values) in a user-friendly window (Fig. 1i); and 
(3) for computational biologists and computer scientists 
who are willing to exploit our source code, we created 
an interactive Jupyter Notebook (Fig.  1j, see Additional 
file 1) to explain the trait analysis workflow as well as the 
software implementation. In particular, we have enable 
the Notebook version to process large image series via 
a Jupyter server, which means users can carry out step-
wise algorithm execution and/or batch processing images 
directly using the Notebook version. Due to software dis-
tribution licensing issues, we recommend users to install 
the Anaconda Python distribution (Python 2.7 version) 
and OpenCV (v2.4.11) libraries before using Leaf-GP. We 
used PyInstaller [41] to package Leaf-GP. Additional file 2 
explains the step-by-step procedure of how to install 
Python and necessary libraries for our software.

After trait analysis, two types of output results are gen-
erated. First, processed images (Fig.  1k), which includes 
pre-processing results, calibrated images, colour cluster-
ing, and figures exhibiting key growth traits such as leaf 



Page 4 of 17Zhou et al. Plant Methods  (2017) 13:117 

outlines, leaf skeletons, detected leaves, and leaf convex 
hull (Additional file 3). Second, comprehensive CSV files 
that follow the open ISA framework [42] and the Plan-
tOmics [43] naming convention (Fig.  1l), containing 
image name, experimental data, pot ID, pixel-to-mm 
ratio, and biologically relevant outputs including pro-
jected leaf area  (mm2), leaf perimeter, convex hull length 
and width (in mm), stockiness (%), leaf convex hull size 
 (mm2), leaf compactness (%), the number of detected 
leaves, and greenness (Additional file 4). These CSV files 
were produced with experimental metadata and pheno-
typic data, so that they can be indexed on the clusters 
or searched on PCs by experiments or treatments. Also, 
Leaf-GP can visualise each CSV file automatically, within 
the software framework (Fig.  2). The source code used 
to plot and compare growth phenotypes is provided in 
Additional file 5, called Leaf-GP plot generator.

The GUI of Leaf‑GP
As plant researchers commonly use PCs for their analy-
ses, we specifically develop the Leaf-GP GUI version 
using Python’s native GUI package, Tkinter [44]. The GUI 

version can operate on different platforms (e.g. Windows 
and Mac OS) and the default resolution of the main win-
dow is set to 1024 × 768 pixels, so that it can be compat-
ible with earlier operating systems (OS) such as Windows 
Vista. Figure 2 illustrates how to use the GUI window to 
process multiple growth image series. A high-level analy-
sis workflow of Leaf-GP is presented in Fig. 2a, contain-
ing five steps: (1) data selection (2) image pre-processing 
(3) global ROI segmentation (i.e. at image level), (4) local 
trait analysis (i.e. at the pot level), and (5) results out-
put. To explain the analysis workflow, we also prepared 
a detailed UML (unified modelling language) activity dia-
gram [45] that elucidates stepwise actions in Additional 
file 6, which includes software engineering activities such 
as choice, iteration, and concurrency to enable the batch 
processing of large image datasets.

Figure 2b shows five self-explanatory sections designed 
to integrate the above analysis workflow into the GUI 
version, including: Data Input, Colour Clustering Setting, 
Series Processing, Processing Log (a hidden section), 
and Results Section. To analyse one or multiple image 
series, users need to follow these sections sequentially. A 

Fig. 1 An overview of how to utilise Leaf-GP in plant growth research. a–c A range of imaging devices, including a fixed imaging platform, 
smartphones, or a mobile version CropQuant equipped with either a Pi NoIR sensor or an RGB sensor. d, e The regions of a tray or a pot need to be 
captured. f, g Both raw and processed image data can be loaded and saved by Leaf-GP on PCs, HPC clusters, or cloud-based computing storage. 
h, j Three versions of Leaf-GP, including HPC, GUI and a Jupyter Notebook. k, l Processed images highlighting key growth phenotypes and CSV files 
containing trait measurements are produced after the batch image processing
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number of information icons (coloured blue) have been 
included to explain how to enter input parameters.

Section 1—data input
To simplify the data input phase, we only require users 
to enter essential information regarding their images 
and associated experiments. To complete the section 
(Fig. 2c), a user first needs to choose a directory (“Image 
Dir.”) which contains captured image series. The GUI 
version can accept both JPEG and PNG files (see Step 
4.1 in Additional file  1), with resolutions ranged from 

4288   ×   2848 (5–7  MB) to 2592   ×   1944 (3–5  MB). 
Then, the user shall enter parameters in the “Row No.” 
and “Column No.” input boxes to define the layout of 
the tray used in the experiment as well as “Ref. Radius 
(mm)” to specify the radius of the red stickers. Finally, the 
user needs to select from “Plant Species” and “Read Exp. 
Data” dropdowns. All inputs will be verified upon entry 
to ensure only valid parameters can be submitted to the 
core algorithm.

In particular, the “Read Exp. Data” dropdown deter-
mines how Leaf-GP reads experiment metadata such as 

Fig. 2 The analysis workflow and the GUI of Leaf-GP. a The high-level analysis workflow of Leaf-GP, containing five main steps. b Five self-explana-
tory sections designed to integrate the analysis workflow into the GUI version of the software. c The initial status of the GUI. d The screenshot after 
selecting image series. e The screenshot when image datasets are being processed in parallel computing. f Growth-related trait plots can be gener-
ated based on the result CSV file, by clicking the associated cell in the Results table
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imaging date, treatments and genotypes. For example, 
choosing the “From Image Name” option allows the soft-
ware to read information from the filename, selecting the 
“From Folder Name” option will extract metadata from 
the directory name, whereas the “No Metadata Available” 
selection will group all images as an arbitrary series for 
trait analysis. This option allows users to analyse images 
that are not following any data annotation protocols. 
Although not compulsory, we developed a simple nam-
ing convention protocol (Additional file 7) to assist users 
to speedily annotate their images or folder names for 
Leaf-GP.

Section 2—colour clustering setting
Once the data input phase is completed, the user can 
click the ‘Load’ button to initiate series sorting, which 
will populate the Colour Clustering Setting section auto-
matically (Fig. 2d). A sample image from the midpoint of 
a given series (e.g. in a 10-image series, the 5th image is 
treated as the midpoint) will be chosen by the software. 
The midpoint image normally contains representative 
colour groups during experiment. The image is then 
processed by a simple k-means method [40], producing 
a colour clustering plot and a k value that represents the 
number of representative colour groups detected by the 
k-means method. The k value is then populated in the 
“Pixel Groups” input box. The user can override the k 
value; however, to reduce the computational complexity, 
Leaf-GP only accepts a maximum value of 10 (i.e. 10 col-
our groups) and a minimum value of 3 (i.e. three colour 
groups). The generated k value is passed to the core anal-
ysis algorithm when analysing growth phenotypes.

Sections 3, 4—series processing
In the Series Processing section (Fig. 2e), the software fills 
the processing table with experimental metadata that 
can help users identify different experiments, includ-
ing experiment reference (“Exp. Ref.”), the tray number 
(“Tray No.”), and the number of images in a series (“No. 
Images”). To improve the appearance of the table, each 
column is resizable. Checkboxes are prepended to each 
recognised series (see Additional file 7). Users can toggle 
one or multiple checkboxes to specify how many experi-
ments will be processed simultaneously. If the ‘No Meta-
data Available’ option is selected (see the “Data input” 
section), information such as “Exp. Ref.” and “Tray No.” 
will not be populated.

The initial status of each processing task (“Status”) is 
Not Processed, which will be updated constantly during 
the image analysis. When more than one experiment is 
selected, Python’s thread pool executor function will be 
applied, so that these experiments can be analysed simul-
taneously in multiple cores in the central processing unit 

(CPU). We have limited up to three analysis threads (sec-
tion 4 in Fig. 2e), because many Intel processors comprise 
four physical cores and conducting parallel computing 
can have a high demand of computing resources (e.g. 
CPU and memory), particularly when raw image datasets 
are big.

Once the processing table is filled, the user can click 
the ‘Run Analysis’ button to commence the analysis. Sec-
tion  5 (Fig.  2b) shows the screenshot when five experi-
ments (i.e. five series) are recognised and four of them 
have been analysed. Due to the multi-task design of Leaf-
GP, the ‘Status’ column will be continually updated for 
each series, indicating how many images have been pro-
cessed in the series. It is important to note that, although 
Leaf-GP was designed for parallel computing, some func-
tions used in the core algorithm are not thread-safe and 
hence cannot be executed by multiple threads at a time. 
Because of this limit, we have utilised lock synchroni-
sation mechanisms to protect certain code blocks (i.e. 
modules or functions), so that these thread-unsafe blocks 
can only be executed by one thread at a time. In addition 
to the processing status, more analysis information and 
processing log data can be viewed by opening the Pro-
cessing Log section (section  4 in Fig.  2e), which can be 
displayed or hidden by clicking the ‘Show/Hide Process-
ing Log’ button on the main window.

Section 5—Results
When all processing tasks are completed, summary infor-
mation will be appended to the Results section, including 
processing ID and a link to the result folder which contains 
a result CSV file and all processed images (“Result Dir.”). 
Depending on which species (i.e. Arabidopsis rosette or 
wheat) is selected, trait plots will be generated based on the 
result CSV file, showing key growth phenotype plots (e.g. 
the projected leaf area, leaf perimeter, leaf convex hull, leaf 
compactness, and leaf numbers) by clicking on the associ-
ated trait cell in the Results table (Fig. 2f). The range of the 
measurement is also listed in the Results section. The GUI 
version saves processing statistics, for example, how many 
images have been successfully analysed and how many 
images have been declined, together with related error or 
warning messages in a log file for debugging purposes.

Core trait analysis algorithms
Multiple trait analysis of Arabidopsis rosettes and wheat 
plants is the core part of Leaf-GP. Not only does it utilise 
a range of computer vision algorithms for automated trait 
analysis, it also encapsulates feature extraction methods 
to produce measures that are biologically relevant to 
growth phenotypes. In the following sections, we explain 
the algorithms and related software implementation in 
detail.
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Step 2—Pre‑processing and calibration
Different imaging devices, camera positions and even 
lighting conditions can cause quality variance during 
image acquisition. Hence, it is important to calibrate 
images before conducting automated trait analysis. We 
developed a pre-processing and calibration procedure as 
shown in Fig. 3. To control memory usage during the batch 
processing, we first resized each image (Fig. 3a) to a fixed 
resolution so that the height (i.e. y-axis) of all images in a 
given series could be fixed. A rescale function in Scikit-
image was used to dynamically transform the image height 
to 1024 pixels (Fig. 3b). This resizing approach only modi-
fies the processed image object and hence will not sacri-
fice potential user power as the raw image is not affected. 
After that, we created a RefPoints function (Function_2 
in Additional file 1) to detect red circular markers attached 
to the corners of a tray or a pot region. To extract these 
markers robustly under different illumination conditions, 
we designed g

(

x, y
)

, a multi-thresholding function to seg-
ment red objects derived from a single-colour extraction 
approach [46]. The function defines which pixels shall be 
retained (intensity is set to 1) and which pixels shall be dis-
carded (intensity is set to 0) after the thresholding:

(1)g
(

x, y
)

=

{

1, if fR
(

x, y
)

> 125 and fB
(

x, y
)

< 225 and (fR
(

x, y
)

− fG
(

x, y
)

) > 50

0, otherwise

where fR
(

x, y
)

 is the red channel of a colour image, fB
(

x, y
)

 
represents the blue channel and fG

(

x, y
)

 the green chan-
nel. The result of the function is saved in a reference binary 
mask.

We then used the regionprops function in Scikit-
image to measure morphological features of the refer-
ence-point mask to filter out false positive items. For 
example, if there are red-coloured objects on the image, 
they will be detected by the RefPoints function. How-
ever, as their area, eccentricity or solidity readings will 
not fit into the characteristics of a red circular marker, 
these objects will be discarded during the feature selec-
tion. After this step, only genuine circular reference 
markers are retained (Fig.  3c) and the average radius 
(in pixels) of the markers is converted to mm units (the 
radius of the red markers is 4 mm). Using the positions 
of these markers, we developed a tailored algorithm 
called PerspectiveTrans_2D (Function_5 in Addi-
tional file  1) to extract the tray region, which includes 
using getPerspectiveTransform and warpPer-
spective functions in OpenCV to retain the region 
that is enclosed by the red markers (Fig. 3d). Finally, we 

Fig. 3 Steps of image pre-processing and calibration. a, b Fix the height (i.e. y-axis) of all processed images in a given series to reduce computa-
tional complexity, raw images are not affected. c Detect red circular markers as the image scale. d Extract ROI from the original image based on red 
markers’ positions. e Denoise the image to smooth leaf surface for the global leaf segmentation
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employed a non-local means denoising function called 
fastNlMeansDenoisingColored in OpenCV to 
smooth leaf surface for the following global leaf ROI seg-
mentation (Fig. 3e).

Step 3—Global leaf ROI segmentation
Besides imaging related issues, changeable experimental 
settings could also cause problems for automated trait 
analysis. Figure 4a–d illustrate a number of problems we 
had encountered whilst developing Leaf-GP. For example, 
the colour and texture of the soil surface can change con-
siderably between different experiments, especially when 
gritty compost and other soil types are used (Fig.  4a, 
b); sometimes plants are not positioned in the centre of 
a pot (Fig. 4b), indicating leaves that cross over to adja-
cent pots should be segmented; algae growing on the soil 
has caused false detection due to their bright green col-
our (Fig.  4c, d); finally, destructive harvest for weighing 
biomass could occur from time to time throughout an 
experiment, indicating the core analysis algorithm needs 
to handle random pot disruption robustly (Fig.  4d). To 
address the above technical challenges, we developed a 

number of computer vision and simple machine-learning 
algorithms based on open scientific libraries. Detection 
results of our software solutions can be seen to the right 
of Fig. 4a–d.

The first approach we developed is to establish a con-
sistent approach to extract pixels containing high val-
ues of greenness (i.e. leaf regions) from an RGB image 
robustly. Using a calibrated image, we computed veg-
etative greenness GV

(

x, y
)

 [13] based on excessive green-
ness ExG

(

x, y
)

 and excessive red ExR
(

x, y
)

 indices [47]. 
The pseudo vegetative greenness image (GV , Fig.  4e) is 
produced by Eq.  2, based on which we implemented a 
compute_greenness_img function (Function_8 in 
Additional file 1) to transfer an RGB image into a GV  pic-
ture. Excessive greenness is defined by Eq. 3 and exces-
sive red is defined by Eq. 4:

(2)GV

(

x, y
)

= ExG
(

x, y
)

− ExR
(

x, y
)

(3)ExG
(

x, y
)

= 2 ∗ fG
(

x, y
)

− fR
(

x, y
)

− fB
(

x, y
)

(4)ExR
(

x, y
)

= 1.4 ∗ fR
(

x, y
)

− fB
(

x, y
)

Fig. 4 Steps of defining global leaf ROI. a–d A number of experiment-related problems encountered whilst developing Leaf-GP (to the left of the 
figures) and results of our solutions (to the right of figures). e A pseudo vegetative greenness image generated. f, g Using k-means to estimate 
how many colour groups can be classified from a given image. h The classification result of the k-means approach based on the pseudo vegetative 
greenness picture, highlighting green pixels in red. i A global adaptive Otsu thresholding used to generate a global leaf ROI binary mask. j, k A LAB 
colour space approach used to extract leaf ROI objects at the image level to improve the global leaf ROI result
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where fR
(

x, y
)

 is the red channel of a colour image, 
fB
(

x, y
)

 represents the blue channel, and fG
(

x, y
)

 the 
green channel.

After that, we applied a simple unsupervised machine 
learning algorithm KMeans (default k  =  8 was used, 
assuming 8 representative colour groups in a given image) 
and KMeans.fit in Scikit-learn to estimate how many 
colour groups can be classified (Fig.  4f, Function_8.1 in 
Additional file 1). We used a median threshold (red dot-
ted line) to classify the colour groups and obtained the 
k value (Fig.  4g). Also, this process has been integrated 
into the GUI version (i.e. the Colour Clustering Setting 
section), as descried previously. Utilising the computed k 
value (e.g. k = 4, Fig. 4g), we designed a kmeans_clus-
ter function (Function_9 in Additional file 1) to classify 
the pseudo vegetative greenness picture, highlighting 
greenness values in red (Fig. 4h). A global adaptive Otsu 
thresholding [48] was used to generate an image level leaf 
ROI binary mask (Fig. 4i). After integrating the k-means 
approach into global ROI segmentation step, we can also 
provide a sound detection of pot regions that have been 
destructively harvested, because the colour groups of 
the harvested pots are often different from the leaf and 
soil regions. However, it is noticeable that the simple 
machine learning approach could produce many miss-
detected leaf objects due to complicated colour presen-
tations during plant growth experiments (e.g. Fig. 4a–d). 
For example, the k-means approach performed well when 
the size of the plants is between 25 and 75% of the size of 
a pot, but created many false detections when leaves are 
tiny or the soil background is too complicated. Hence, we 
designed another approach to improve the leaf detection 
based on the result of the k-means approach.

We employed Lab colour space [49], which incorpo-
rates lightness and green–red colour opponents to refine 
the detection. We created an internal procedure called 
LAB_Img_Segmentation (Function_7 in Additional 
file 1) to transfer RGB images into Lab images using the 
color.rgb2lab function in Scikit-image, based on 
which green pixels were featured in a non-linear fash-
ion (Fig.  4j). Again, a global adaptive Otsu thresholding 
was applied to extract leaf objects and then a Lab-based 
leaf region mask (Fig.  4k). However, the Lab-based 
approach alone cannot handle destructively harvested 
pots soundly. As a result, we decided to combine the Lab-
based mask with the k-means mask as the output of the 
phase of global leaf ROI segmentation.

Step 4.1—Pot level segmentation
To measure growth phenotypes in a given pot over 
time, plants within each pot need to be monitored over 
time. Using the calibrated images, we have defined 
the tray region, based on which we constructed the 

pot framework in the tray. To accomplish this task, we 
designed an iterative layout drawing method called Pot-
Segmentation (Function_5 in Additional file 1) to gen-
erate anti-aliased lines using the line_aa function in 
Scikit-image to define the pot layout (Fig. 5a). After con-
structing the framework, we segmented the whole leaf 
image into a number of sub-images (Fig. 5b), so that plant 
can be analysed locally, i.e. at the pot level. Again, we 
developed an iterative analysis approach to go through 
each pot with the sequence presented in Fig. 5c.

Within each pot, we conducted a local leaf ROI detec-
tion method. For example, by combining leaf masks 
produced by the machine learning (Fig.  4i) and the Lab 
colour space (Fig.  4k) approaches, some false positive 
objects may still remain (Fig.  5d). The local leaf detec-
tion can therefore enable us to use pot-level contrast and 
intensity distribution [50], weighted image moments [51], 
texture descriptor [52], and leaf positional information 
to examine each sub-image to refine the leaf detection 
(Fig. 5e, Step_4.4.2 in Additional file 1). This local feature 
selection method (detailed in the following sections) can 
also help us decrease the computational complexity (i.e. 
memory and computing time) during the batch image 
processing, as detailed analysis is now carried out within 
smaller sub-images.

Step 4.2—Local multiple trait measurements
Utilising the pot-level leaf masks (Fig.  6a), a num-
ber of growth phenotypes could be quantified reliably 
(Steps_4.4.2 and 4.4.3 in Additional file 1). They are enu-
merated briefly as follows:

1. “Projected Leaf Area  (mm2)” measures the area of 
an overhead projection of the plant in a pot. While 
implementing the function, the find_contours 
function in Scikit-image is used to outline the leaf 
region (coloured yellow in Fig.  6b). Green pixels 
enclosed by the yellow contours are totalled to com-
pute the size of the projected leaf area (Fig. 6c). Pixel-
based quantification is then converted to mm units 
based on the pixel-to-mm exchange rate computed 
using the reference markers. This trait is a very reli-
able approximation of the leaf area and has been used 
in many plant growth studies [20, 22, 53].

2. “Leaf Perimeter (mm)” is calculated based on the 
length of the yellow contour line that encloses the 
detected leaf region. Again, pixel-based measure-
ments are converted to mm units, which are then 
used to compute the size change of a plant over time.

3. “Daily Relative Growth Rate (%)” (Daily RGR) quanti-
fies the speed of plant growth. Derived from the RGR 
trait described previously [19, 54], the Daily RGR 
here is defined by Eq. 5:



Page 10 of 17Zhou et al. Plant Methods  (2017) 13:117 

Fig. 5 Steps of conducting pot level segmentation in a sequential manner. a Depending on the number of rows and columns entered before, anti-
aliased lines are generated to define the pot layout. b Segmented a given image into a number of sub-images. c The sequence of going through 
each pot. d, e A local detection method is applied to improve leaf detection

Fig. 6 Steps of measuring multiple growth traits. a Refined leaf masks for every pot. b Contours generated to outline the leaf region. c Green pixels 
enclosed by the contours are totalled for computing the size of the projected leaf area. d Convex hulls created in every pot. e Stockiness and com-
pactness calculated based on the ratio between the plant projected area and the leaf perimeter. f Trait analyses are divided by each pot
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 where ln is natural logarithm, Area1i is the projected 
leaf area in pot i in the previous image, Area2i is the 
leaf area in pot i in the current image, and (t2− t1) 
is the duration (in days) between the two consecutive 
images.

4. “Leaf Convex Hull  (mm2)” expresses the extracted 
leaf region that is enclosed by a 2D convex hull in a 
pot [19, 20, 22]. The convex hull was generated using 
the convex_hull_image function in Scikit-
image, enveloping all pixels that belong to the plant 
with a convex polygon [55]. Figure  6d presents all 
convex hulls created in a given tray. As described 
previously [19], this trait can be used to define the 
coverage of the leaf region as well as how the petiole 
length changes during the growth.

5. “Stockiness (%)” is calculated based on the ratio 
between the leaf projected area and the leaf perim-
eter [22, 56]. It is defined as (4π ∗ Areai)/(2π ∗ Ri)

2, 
where Areai is the projected leaf area detected in pot 
i and Ri is the longest radius (i.e. major axis divided 
by 2) of the convex hull polygon in pot i (Fig.  6e). 
This trait (0–100%) has been used to measure how 
serrated a plant is, which can also indicate the circu-
larity of the leaf region (e.g. a perfect circle will score 
100%).

6. “Leaf Compactness (%)” is computed based on the 
ratio between the projected leaf area and the area of 
the convex hull enclosing the plant [20, 22]. Figure 6f 
shows how green leaves are enclosed by yellow con-
vex hull outlines that calculates the leaf compactness 
trait.

7. “Greenness” monitors the normalised greenness 
value (0–255) within the convex hull region. As 
described before, we used the compute_green-
ness_img function to provide the greenness read-
ing, so that we could minimise the background noise 
caused by algae and soil types. Greenness can be 
used to study plant growth stages such as vegetation 
and flowering [16].

Step 4.3—Leaf number detection
As the number of rosette leaves and the leaf size are pop-
ularly used to determine key growth stages for Arabidop-
sis [15], we therefore designed a leaf structure detection 
algorithm to explore how to provide a consistent reading 
of traits such as the number of detected leaves and the 
number of large leaves over time. This algorithm com-
prises of a 2D skeletonisation algorithm (Function_10 in 
Additional file 1) and an outline sweeping method (Func-
tion_11 in Additional file 1).

(5)
1

(t2− t1)
∗ (ln(Area2i)− ln(Area1i)/ln(Area1i)

Figure 7a demonstrates the result of the skeletonisation 
approach, which utilises the skeletonize function in 
Scikit-image to extract 2D skeletons from the leaf masks 
within each pot. The skeletons can be used to quantify 
the structural characteristics of a plant [57]. In our case, 
we use the approach to measure the number of leaf tips 
and branching points of a rosette leaf. For example, we 
designed a find_end_points function to detect end 
points (i.e. leaf tips) using the binary_hit_or_miss 
function in the SciPy library to match the four possible 
2D matrix representations:

The find_end_points function outputs 2D coordi-
nates of end points that correlates with leaf tips (Fig. 7b). 
We have employed the function to measure large or long 
rosette leaves, if they are over 50 or 70% of the final size 
(Fig. 7c and Step_4.4.2.7 in Additional file 1). To accom-
plish this, we evaluated the leaf skeleton as a weighted 
graph and then treated: (1) the skeleton centroid and end 
points as vertices (i.e. nodes), (2) lines between the centre 
point and end points as edges, and (3) the leaf area and 
the length between vertices as weights assigned to each 
edge. Depending on the experiment, if the weights are 
greater than a predefined threshold (i.e. over 15  mm in 
length or over 100 mm2 in leaf size in our case), the asso-
ciated leaf will be recognised as a long or large leaf. The 
predefined threshold is also changeable in the Notebook 
and HPC versions of Leaf-GP.

As the skeletonisation approach could miss very small 
leaves if they are close to the centroid or partially over-
lapping with other leaves, we therefore implemented 
a leaf_outline_sweeping module to establish 
another approach to detect the total leaf number based 
on the distance between the plant centroid and detected 
leaf tips. This procedure is based on a published leaf tip 
identification algorithm applied to three images [5]. We 
improved upon the algorithm for batch processing by 
using the leaf boundary (i.e. contour) to enhance the 
accuracy of the detection and reduce the computational 
complexity. For a given plant, the algorithm generates 
a distance series represents the squared Euclidean dis-
tances from the plant centroid to its contour, at angles 
between 0 and 359 degrees with a 1-degree interval 
(for presentation purposes, we used 15 degree inter-
vals in Fig.  7d). To reduce noise, the distance series 
was smoothed by a Gaussian kernel (Fig.  7d). Finally, a 
Python-based peak detection algorithm called PeakDe-
tect [58] is integrated to detect peaks on the distance 
series (Step_4.4.2.8 in Additional file  1). The module 
implemented here supports our assumption that the 

(6)0 0 0

0 1 0
or

0 1 0

0 0 0
or

0 0

0 1
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or
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1 0
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number of peaks can largely represent the number of 
leaf tips during the batch processing (Fig.  7e, f ). When 
quantifying the total number of leaves, results from both 
skeleton and outline sweeping approaches are combined 
to produce the number measurement. Notably, although 
we have generated highly correlated leaf number reading 
against human scoring  (R2 = 0.924 on three image series) 
and between the two approaches  (R2 =  0.903 on three 
series), we want to point out that the leaf number detec-
tion method is still at an early stage, requiring a joint 
community effort to improve its soundness and accuracy.

Results
Leaf-GP can facilitate plant growth studies through 
automating trait analysis and cross-referencing results 
between experiments. Instead of only using machine 
learning algorithms to build neural network architecture 
for pixel clustering or trait estimates [59], we chose an 
approach that combines simple unsupervised machine 
learning, computer vision and image analysis algo-
rithms to establish an efficient analysis framework. This 
approach has enabled us to generate biologically relevant 
outputs at both image and pot levels. Here, we exhibit 
three use cases where Leaf-GP were employed to study 
key growth phenotypes for Arabidopsis rosettes and Par-
agon wheat.

Use case 1—Tracking three genotypes in a single tray
We applied Leaf-GP to measure growth phenotypes in 
a tray containing three genotypes Ler (wildtype), spt-2, 

and gai-t6 rga-t2 rgl1-1 rgl2-1 (della4) at 17 °C. Each pot 
in the tray was monitored and cross-referenced dur-
ing the experiment. The projected leaf area trait in 24 
pots was quantified by Leaf-GP (Fig.  8a) and rosette 
leaves were measured from stage 1.02 (2 rosette leaves, 
around 5 mm2) to stage 5 or 6 (flower production, over 
2400 mm2), a duration of 29 days after the first image was 
captured.

After dividing the quantification into three genotype 
groups, we used the projected leaf area readings (Fig. 8b) 
to verify the previously manually observed growth differ-
ences between Ler, spt-2, and della4 [2, 3]. Furthermore, 
the differences in phenotypic analyses such as leaf perim-
eter, compactness, leaf number, and daily RGR of all three 
genotypes can be differentiated (Fig.  8c–f). Particularly 
for Daily RGR (Fig.  8f ), the three genotypes exhibit a 
wide variety of growth rates that verify the known genetic 
factors published previously [60]. Based on image series, 
Leaf-GP can integrate time and treatments (e.g. tem-
perature signalling or chemicals) with dynamic growth 
phenotypes for cross referencing. We provided the CSV 
file for Use Case 1 in Additional file  4, containing plot-
level trait measurements over time. The Python script we 
used to plot and cross-reference pot- or genotype-based 
growth phenotypes is provided in Additional file 5, which 
is also integrated in the GUI version.

Use case 2—Two genotypes under different temperatures
We also used the software to detect different rosette 
growth patterns between Ler (wildtype) and spt-2 grown 

Fig. 7 Steps of detecting leaf structure. a The result of a 2D skeletonisation approach to extract leaf structure. b Detect end points of the leaf struc-
ture that correlate with leaf tips. c Large or long rosette leaves identified if they are between 50 and 70% of the final size. d Generate a leaf outline 
series to represent the distance between the plant centroid and its leaf contour, at angles between 0 and 359 degrees with a 15-degree interval. e, f 
The number of detected peaks are used to represent the number of leaf tips
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at different temperatures, i.e. 12 and 17 °C. Utilising the 
projected leaf area measurements, we observed that tem-
peratures affect vegetative growth greatly on both geno-
types (Fig. 9a). Similar to previously studied [2, 3], lower 
temperatures can have a greater effect on the growth of 
spt-2 than Ler. Around seven weeks after sowing, the 
projected leaf area of spt-2 was around 50% greater on 
average (1270  mm2) compared to Ler (820  mm2), when 
grown at 12 °C (Fig. 9c). However, when grown in 17 °C, 
at 36 days-after-sowing spt-2 had a similar area at around 
1200  mm2, but Ler had an area of 1000  mm2, a much 
smaller difference.

As our software can export multiple growth pheno-
types, we therefore investigated both linked and inde-
pendent effects of temperature on wildtype and spt-2. 
For instance, the larger rosette in spt-2 causes a similar 
increase in rosette perimeter, canopy length and width, 
and canopy size. At similar days after sowing, plants of 
both genotypes grown at 12 °C had more compact rosettes 
that those growing at 17  °C (Fig. 9b), whereas spt-2 was 
less compact than Ler in general. The number of leaves 
produced was greater at the warmer temperature (Fig. 9c). 
This ability to easily export a number of key growth traits 
of interest is useful and relevant to broader plant growth 
research. We provided detailed phenotypic data (csv files) 

for the Ler (12 and 17 °C, Additional file 8) and spt-2 (12 
and 17 °C, Additional file 9) experiments with processed 
images, which can be downloaded freely at https://github.
com/Crop-Phenomics-Group/Leaf-GP/releases.

Use case 3—Monitoring wheat growth
Another application for which Leaf-GP has been designed 
is to analyse wheat growth images taken in glasshouses or 
growth chambers using smartphones. In this case, every 
image only contains one wheat pot. Similarly, red circu-
lar stickers (5 mm in radius) are required to attach to the 
corners of the pot region so that Leaf-GP can extract ROI 
and transfer traits in mm units. Figure 10 demonstrates a 
proof-of-concept study demonstrating how Leaf-GP could 
be used to measure projected leaf area and leaf convex 
hull based on Paragon (a UK spring wheat) image series 
taken over a 70-day period in greenhouse (Fig. 10a), from 
sprouting (Fig. 10b) to tillering (Fig. 10c), and then from 
booting (Fig. 10d) to heading (Fig. 10e). With a simple and 
low-cost imaging setting, Leaf-GP can quantify growth 
phenotypes for wheat under different experimental condi-
tions. Please note that the leaf counting function in Leaf-
GP cannot be reliably applied to quantify wheat leaves due 
to the complicated plant architecture of wheat plants (the 
Notebook version for wheat can also be seen on Github, 

Fig. 8 Case study 1: Analysis results of a tray with three genotypes. a The projected leaf area trait in 24 pots was quantified by Leaf-GP. b The pro-
jected leaf area trait divided into three genotype groups (i.e. G1, G2, G3). c–f A number of growth-related traits such as leaf perimeter, compactness, 
leaf number, and daily RGR of the three genotypes are quantified

https://github.com/Crop-Phenomics-Group/Leaf-GP/releases
https://github.com/Crop-Phenomics-Group/Leaf-GP/releases
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at https://github.com/Crop-Phenomics-Group/Leaf-GP/
releases).

Discussion
Different environmental conditions and genetic muta-
tions can impact a plant’s growth and development, mak-
ing the quantification of growth phenotypes a useful tool 
to study how plants respond to different biotic and abi-
otic treatments. Amongst many popularly used growth 

phenotypes, imaging leaf-related traits is a non-destruc-
tive and reproducible approach for plant scientists to 
record plant growth over time. In comparison with many 
published image analysis software tools for leaf pheno-
typing, our software provides an open and automated 
software framework that is capable of extracting multi-
ple traits from large image datasets; and moreover, it can 
provide traits analysis that can be used to cross reference 
different experiments. In order to serve a broader plant 

Fig. 9 Case Study 2: Analysis results of multiple experiments. a The projected leaf area measurements used to observe how temperatures affect 
vegetative growth on both Ler and spt-2. b Plants of both genotypes growing at 12 °C had more compact rosettes than those growing at 17 °C. spt-
2 was less compact than Ler in general. c The number of leaves produced was greater at the warmer temperature

Fig. 10 Case Study 3: Applying Leaf-GP on wheat growth studies. a A proof-of-concept study of how to measure the projected leaf area and the 
convex hull size based on Paragon wheat images captured over a 70-day period in greenhouse. b–e Analysis results generated from the sprouting 
stage to the heading stage

https://github.com/Crop-Phenomics-Group/Leaf-GP/releases
https://github.com/Crop-Phenomics-Group/Leaf-GP/releases
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research community, we designed three versions of Leaf-
GP, including a GUI version for PC users, a command-
line interface for HPC users, and a Notebook version for 
computational users. We provide all steps of the algo-
rithm design and commented software implementation 
openly, together with raw and processed datasets for 
others to reproduce our Arabidopsis and Paragon wheat 
studies at NRP.

Open software design
When developing the software, we particularly consid-
ered how to enable different plant research laboratories 
to utilise our work for screening large populations of 
Arabidopsis and wheat in response to varied treatments 
using low-cost imaging devices. Hence, we focused on 
software usability (e.g. simple command-line interface or 
GUI), capability (automatic multiple traits analyses run-
ning on different platforms), expandability (open soft-
ware architecture, new functions and modules can be 
easily added, see the PeakDetect procedure in Addi-
tional file  1), and biological relevance (i.e. the extracted 
features are biological relevant). We trust that Leaf-GP 
is suitable for studying the growth performance with 
limited imaging hardware investment and software 
requirements.

The software has been used to evaluate noisy images 
caused by algae and different soil surfaces. Still, it can 
reliably execute the analysis tasks without users’ inter-
vention. To verify Leaf-GP’s measurements, we have 
scored manually the key growth phenotypes on the same 
pots and obtained an average correlation coefficient of 
0.958 on three traits (i.e. projected leaf area, leaf com-
pactness, and leaf numbers). As the software is imple-
mented based on open scientific libraries, it can be easily 
adopted or redeveloped for other experiments. We have 
also tested the performance of the software when han-
dling large image datasets. Using the profile function in 
PyCharm [61], we recorded that the software could finish 
processing 2.6  GB (a series of 437 images with an aver-
age size of 6  MB) on an ordinary PC (Intel Core i5 5th 
generation, quad core 3 GHz, 8 GB memory) within 3 h, 
averagely 25 s per image.

From a software engineering perspective, we followed 
best practices in phenotypic analysis [62], i.e. choosing 
traits based on the statistical variation or dispersion of a 
set of phenotypic data values. Whilst implementing the 
software, we built on our previous work in batch pro-
cessing and high-throughput trait analysis [56, 63, 64] 
and improved software implementation in areas such 
as reducing computational complexity (e.g. the usage of 
CPU cores and memory in parallel computing), optimis-
ing data annotation and data exchange between appli-
cation programming interfaces (APIs), i.e. the objects 

passing between internal and external functions or meth-
ods, promoting mutual global and local feature verifica-
tion (e.g. cross validating positional information at the 
image and the pot levels), and implementing software 
modularity and reusability when packaging the software. 
Furthermore, we verify that, instead of fully relying on 
a black-box machine learning approach without an in-
depth understanding of why clustering or estimation is 
accomplished, it is more efficient to establish an analysis 
pipeline based on a sound knowledge of the biological 
challenges that we need to address. If the features we are 
interesting is countable and can be logically described, 
computer vision methods could be efficient for our phe-
notypic analysis missions. To support computational 
users to exploit our work, we have provided very detailed 
comments in the source code.

The potential use of the software
From a biological perspective, the use of key growth 
phenotypes generated by the software can be an excel-
lent toolkit for screening leaf growth, leaf symmetry, 
leaf morphogenesis and movement, e.g. phototropism. 
For example, the leaf skeleton is a useful tool to esti-
mate hyponasty (curvature of the leaf ). Colour features 
in combination with leaf convex hull could be used as a 
marker to quantify plant maturation, e.g. Arabidopsis 
plants transits to the reproductive stage (i.e. flowering), 
a change from vegetative to flowering meristem when 
cauline leaves are produced. Some phenotypes are also 
useful in studies other than plant development biology, 
for instance, vegetative greenness can be used in plant 
pathogen interaction to analyse the activity of pathogens 
on the leaf surface, as most of the times broad yellowish 
symptoms can be observed from susceptible plants (e.g. 
rust in wheat).

Conclusions
In this paper, we presented Leaf-GP, a sophisticated soft-
ware application for analysing large growth image series 
to measure multiple growth phenotypes in response to 
different treatments over time. We demonstrated that 
treatment effects between genotypes could be detected 
reliably by the software. We also showed the usefulness 
and the accuracy of the analysis based on quantifying 
growth traits for Arabidopsis genotypes under varied 
temperature conditions and wheat growth in the glass-
house. To serve a broader plant research community, we 
improved the usability of the software so that it can be 
executed on different platforms. To help users to gain 
an in-depth understanding of the algorithms and the 
software, we have provided our source code, detailed 
comments, software modulation strategy, and executa-
bles (.exe and .app), together with raw image data and 
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processing results in this paper as well as at https://
github.com/Crop-Phenomics-Group/Leaf-GP/releases.

Leaf-GP software can be used without programming 
skills and limited requirements on imaging equipment. 
Our software has confirmed previously reported results 
in the literature, which can be reproduced in other plant 
growth studies. Our case studies of temperature effects 
and different genotypes or plant species are not limited. 
Many plant growth and development experiments can 
be analysed by Leaf-GP, for example, natural variation in 
plant growth, or plants experiencing mineral or nutrient 
stress.
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