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Abstract 

Background: Image-based plant phenotyping has become a powerful tool in unravelling genotype–environment 
interactions. The utilization of image analysis and machine learning have become paramount in extracting data stem-
ming from phenotyping experiments. Yet we rely on observer (a human expert) input to perform the phenotyping 
process. We assume such input to be a ‘gold-standard’ and use it to evaluate software and algorithms and to train 
learning-based algorithms. However, we should consider whether any variability among experienced and non-expe-
rienced (including plain citizens) observers exists. Here we design a study that measures such variability in an annota-
tion task of an integer-quantifiable phenotype: the leaf count.

Results: We compare several experienced and non-experienced observers in annotating leaf counts in images of 
Arabidopsis Thaliana to measure intra- and inter-observer variability in a controlled study using specially designed 
annotation tools but also citizens using a distributed citizen-powered web-based platform. In the controlled study 
observers counted leaves by looking at top-view images, which were taken with low and high resolution optics. We 
assessed whether the utilization of tools specifically designed for this task can help to reduce such variability. We 
found that the presence of tools helps to reduce intra-observer variability, and that although intra- and inter-observer 
variability is present it does not have any effect on longitudinal leaf count trend statistical assessments. We com-
pared the variability of citizen provided annotations (from the web-based platform) and found that plain citizens can 
provide statistically accurate leaf counts. We also compared a recent machine-learning based leaf counting algorithm 
and found that while close in performance it is still not within inter-observer variability.

Conclusions: While expertise of the observer plays a role, if sufficient statistical power is present, a collection of non-
experienced users and even citizens can be included in image-based phenotyping annotation tasks as long they are 
suitably designed. We hope with these findings that we can re-evaluate the expectations that we have from auto-
mated algorithms: as long as they perform within observer variability they can be considered a suitable alternative. In 
addition, we hope to invigorate an interest in introducing suitably designed tasks on citizen powered platforms not 
only to obtain useful information (for research) but to help engage the public in this societal important problem.

Keywords: Phenotyping, Image-based, Observer, Agreement, Variability, Crowdsourcing, Citizen-science

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
This community is well aware of the importance of 
measuring a plant’s phenotype and its modulation due 
to environmental and genotypic variations. Scientists 
have been observing plants directly, measuring pheno-
typing traits manually for years. Whilst this method is 

labour-intensive and time consuming, it is also prone to 
errors [1, 2]. Recently, image-based phenotyping by cou-
pling imaging and automation has created a revolution 
on how we observe (and can potentially quantify) such 
phenotypic variation, in the hope of reducing the pheno-
typing bottleneck [3–5]. Without a doubt this potential 
has spurred a great interest in the imaging of plants at 
various levels of scale, above or below ground level, in the 
optical or hyper-spectral spectrum in 2D or 3D [6, 7].
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However, the ability to extract actionable information 
from image data, that will lead to the full realization of 
this revolution, is still considered a hard task  [8]. It is 
the complexity of some of the tasks involved that have 
now created a new bottleneck: lack of appropriate soft-
ware solutions able to effectively analyze such data  [9]. 
The community has reacted swiftly by placing signifi-
cant emphasis in the design of new algorithms and the 
release of software (for example see the collection of 
http://www.plant-image-analysis.org and [10]). More 
recently, open datasets [11–13] have allowed not only 
the ability of experts within the community to evalu-
ate algorithmic performance on key phenotyping tasks, 
such as leaf segmentation and counting, but also enabled 
image computing experts new to plant phenotyping to 
enter this exciting field [14–18]. Unsurprisingly, many 
of the new methods rely on machine learning, a technol-
ogy that has the potential to transform how phenotyping 
discovery from images can occur in the future [19, 20], 
as also recently demonstrated [15, 16, 21]. Even though 
its potential is well-known, machine learning algorithms 
do require data to learn from, which typically need to be 
annotated by expert observers when domain-specificity 
is required. The performance of algorithms is bounded to 
the precision of observers. Naturally this raises the ques-
tion how precise are the experts on a given task?

In the medical community, variability among observers 
is known to exist and has been accepted [22]. Also experts 
in plant breeding, diseases, and taxonomy agree that vari-
ability exists [23–25]. For example, several studies [26–28] 
have been used as de-facto references for discussing rater 
disagreement when visually scoring leaf diseases on the 
basis of scales. At the same time they have become moti-
vating references advocating that image analysis systems 
can help reduce (rater) variation [29]. They have been also 
perused in advocating for the use of digital imaging itself 
as opposed to on site surveys with rating scales [30]. Even 
the image-based phenotyping literature has been perus-
ing these works [30, 31]. However, an extensive literature 
review has not found a comparison of raters on visually 
quantifiable traits or phenotypes.

One such integer-quantifiable phenotype is counting 
the number of leaves (or fruits, flowers). Leaf count can 
be used to describe the growth status of a plant [32], and 
is obviously closely related to plastochron or phyllochron 
[33–35] and can be used to assess plants’ reactions to 
stress [34, 36]. Herewith lies a key difference: the count 
as a phenotype has a physical ‘ground truth’ which visual 
scales are not capturing and are not suited for. To this 
day, no such direct evaluation of observer agreement in 
leaf counting exists and to the best of our knowledge in 
the broader sense of image-based phenotyping of quanti-
fiable phenotypes.

Clearly, counting objects, here leaves, is a task gener-
ally doable even by non-experts without detailed expla-
nations. This may not be true for other, maybe visually 
harder, phenotyping tasks. However, even though count-
ing plant organs might seem an elementary task, many 
factors may result in different values among observers, 
such as severe occlusions, small objects in the scene, 
low camera resolution, as well as mental fatigue of the 
annotators.

Estimating observer variability is crucial because it 
primarily allows us to put bounds on effect sizes and 
devise annotation strategies that minimize annotation 
effort (e.g. by splitting annotation effort among many 
observers). At the same time, by evaluating agreement 
comparing experienced (expert) and non-experienced 
(non-expert) observers we can evaluate the potential of 
using non-experts for simple well-defined annotation 
tasks. In addition, it allows us to put the performance 
of algorithms in comparison to intra- or inter-observer 
variation and assess how close we are to achieve human 
performance. It may even permit us to devise different 
algorithmic approaches that learn despite the presence of 
disagreement [37, 38].

Equally exciting is the potential to explore how the use 
of common citizens can be used to not only annotate 
data for machine learning but as being part of a pheno-
typing experimental pipeline. The introduction of Ama-
zon Mechanical Turk (AMT, https://www.mturk.com/) 
that permits the use of humans (via fee) in solving com-
puter based microtasks in combination with annotation 
frameworks (e.g. LabelMe [39]) has led to an explosion of 
the potential use of crowdsourcing—a term was coined 
by Jeff Howe in 2006 [40]. It has been used for a variety 
of tasks already even for plant research e.g. http://photo-
nynq.org. However, there have been ongoing debates as 
to how one can control the quality of outcomes because 
in principle, crowdsourcing allows ‘anyone’ to contrib-
ute. More recently, citizen-powered platforms, where 
volunteers participate to help with a task, as opposed to 
receiving a reward (a payment in real [AMT] or virtual 
money [Gamification]), have received particular atten-
tion by many researchers. One such popular platform, 
Zooniverse (http://www.zooniverse.org), allows research-
ers to build projects to collect data from thousands of 
people around the world, in order to support corre-
sponding research. Several exciting projects have used 
the platform already: for example, Arteta et al. [41] used 
the data from a penguin watch project to automatically 
count penguins in the wild.

In this paper we aim to estimate observer agreement 
with a simple, yet expertly designed, image-based obser-
vational study. We select images of Arabidopsis Thaliana 
(taken from a dataset in the public domain [11]) and ask 

http://www.plant-image-analysis.org
https://www.mturk.com/
http://photonynq.org
http://photonynq.org
http://www.zooniverse.org


Page 3 of 14Giuffrida et al. Plant Methods  (2018) 14:12 

several observers to count leaves using a variety of setups 
in a controlled fashion. At the same time, we included the 
same images within a larger citizen-powered research 
project that runs on Zooniverse. Specifically, we aim to 
assess whether:

1. variations exist between the same observer (intra-
observer);

2. computer-aided counting, using a specifically 
designed annotation tool, helps to reduce variability 
compared to straight-forward visual observation;

3. observers differ from each other (inter-observer);
4. higher resolution reduced observer variability;
5. observer variability has any statistical influence in 

separating a cultivar of known different leaf growth 
w.r.t. wild-type;

6. time needed for annotations depends on expertise;
7. we can simulate the effects of randomly sampling 

from an observer population on statistical inference;
8. counts from a citizen-powered study can be used for 

phenotyping; and
9. a recent ML algorithm that predicts leaf count from 

plant images performs within the variation of observ-
ers.

We address these points one by one in this order in the 
“Results” section.

Methods
We recruited 10 annotators: 5 who have experience with 
image-based plant phenotyping (shorthanded below as 
ExP) and 5 who do not have experience with phenotyp-
ing but yet have experience with images (shorthanded 
hereafter as NExP) to annotate a subset of the Arabi-
dopsis dataset in [11]. Specifically, each annotator had a 
set of different tasks to accomplish using visual tools or 
simple observation designed to assess the influence of the 
factors considered in this study (see background above). 
Details of the approach taken are provided below.

Employed image data
The data used in this study have been collected using an 
affordable imaging setup that used a Raspberry Pi cam-
era, but also an optical zoom camera that offered a higher 
effective resolution [21]. Images of two cultivars were 
selected (the wild-type col-0 and pgm), 5 replicates each 
every other day at 8am (i.e. every 48  h). pgm is known 
not to be able to accumulate transitory starch due to a 
mutation in the plastidic isoform of the phosphogluco-
mutase, which is required for starch synthesis and overall 
is known to be smaller than the wild-type [42]. Further-
more, pgm was recently shown to produce new leaves at 
a pace lower than wild-type [21]. Thus, we knew a priori 

that these cultivars should show differences in a longitu-
dinal assessment of leaf count. The sampling frequency 
chosen (every 48  h) results in 13 time points per each 
plant, providing 130 images overall for annotation. This 
sampling frequency was chosen after statistical power 
analysis on the sample size of an ANOVA experiment 
[43] drawing effect sizes reported in [21].

Images were cropped such that a plant appears centered 
in the field of view. Plant images from the Raspberry Pi 
camera had an effective resolution of 300  ×  300 pixels 
(hereafter shorthanded as RPi), whereas the ones from the 
camera with movable optics had 470 × 470 pixels (short-
handed as Canon). In addition, to properly test intra-
observer variability eliminating as much as possible effects 
of visual memory, a copy of all images was created, where 
images were artificially transformed by random 90°, 180°, 
270° rotation or horizontal/vertical flip. These transformed 
datasets are shorthanded as RPi’ and Canon’. Data within 
each set were randomized to break temporal consistency 
and within genotype associations and to satisfy an identi-
cally independently distributed (IID) data source design.1 
Dataset names were obscured as A (RPi), B (Canon), C 
(RPi’), and D (Canon’) such that observers were blinded to 
what the sets meant and reduce possible bias in ratings.

Study design
A customized graphical user interface, based on the 
annotation tool in Phenotiki,2 was specifically designed 
for this study [21, 44]. The tool prompted the user to 
select a dataset for annotation (from A, B, C, D) and the 
selected list of images was automatically loaded. For each 
image, the observer could place dot annotations marking 
every leaf they could identify. Critically dots remained 
visible throughout a plant annotation helping the annota-
tor keep track of visited leaves. When the observer was 
done, they could proceed to the next plant. Zoom and 
pan functionality were available to help observers visual-
ize scenarios such as small emerging leaves and occlu-
sions. Annotation timing was recorded but observers 
were not aware of this fact. Annotation timing (per plant) 
was calculated as the time elapsed from the first and last 
leaf annotation for a given plant. An example of the inter-
face seen by users is shown in Fig. 1A.

Experienced (with image-based plant phenotyping) and 
non-experienced observers were recruited to participate 
in this observational study. They were provided with a 
description of the purpose of the study, and were asked 
to consent to participate in the study. They were shown 
a guide and an introduction to the annotation tool to 

1 This more closely emulates how experts rate data with visual scales in the 
field since there is an inherent assumption that previous ratings and images of 
the scene are not used as reference.
2 More information at http://phenotiki.com.

http://phenotiki.com
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ensure a common baseline. Specifically, we showed them 
examples of good plant annotations, where they were 
asked to mark leaves at the center of the leaf blade (or the 
most visible area in case of severe overlap). Each observer 
was assigned two or more of the datasets to rate and 
count leaves. The order of the datasets shown was rand-
omized and never of the same orientation (e.g. if one was 
shown A the next dataset would be C or D) to minimize 
effects of memory. To further reduce memory effects a 
10 min break was enforced between annotation tasks.

Some observers were asked to rate the images also 
without the use of the tool but recorded leaf counts in a 
spreadsheet after shown an image.

Time to complete each set was recorded in addition to 
the times recorded by the tool itself (see annotation tim-
ing above).

Citizen‑powered study
The A data (RPi) were included as part of a larger citi-
zen-powered study (“Leaf Targeting”, available at https://
www.zooniverse.org/projects/venchen/leaf-targeting) 
built on Zooniverse (https://www.zooniverse.org/). Using 
the Zooniverse application programming interface (API), 
an annotation work-flow was designed that showed an 
image to a user via a web browser. The users (random 
visitors) were asked to view a tutorial on how to annotate 
leaves. The task essentially involved placing a dot anno-
tation on each leaf, thus retaining the characteristics of 
the interface used in the fully controlled study described 
previously. Users could as well zoom in and out and 
delete dot annotations. Users were also asked to answer 
a question after each plant was annotated as to their con-
fidence in having annotated all leaves (encoded as Yes: 3, 

Fig. 1 Annotation tool. Screenshots of the annotation tool and the web-page seen by users. A Screenshot of the customized, yet simplified, version 
of the leaf annotation tool in [21]. B An excerpt of the Zooniverse site used here showing annotations and the (single-choice) confidence question

https://www.zooniverse.org/projects/venchen/leaf-targeting
https://www.zooniverse.org/projects/venchen/leaf-targeting
https://www.zooniverse.org/
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Not sure: 2, Missed leaves: 1). An example of an anno-
tated image along with the interface and questions seen 
by the users are shown in Fig. 1B. We note that the users 
have the option to log in to the platform and also to com-
ment about images where they can discuss issues related 
to the image or the task in general. We set the work-flow 
to repeat the same image 8 times after at least all images 
have been annotated 3 times; images for annotation are 
shown at random and thus annotations can be treated as 
IID and the same image is not rated by the same user. The 
system exports complete information for each annotated 
image such as image ID, user name (or unique IP), time, 
the locations and number of dots, and the response to the 
confidence question.

Statistics and evaluation metrics
A variety of descriptive and summary statistics as well as 
several statistical methods were used to evaluate agree-
ment in the controlled experiment. We note that in the 
case of discrete counts and heavily zero inflated differences 
(when comparing counts between observers) many of the 
common statistics and visualization methods can lead to 
misinterpretations. Thus, between a reference observer 
(XR) and one of the other observers (Xo), we adopted:

  •  Difference in count (DiC) mean and standard deviation 
of difference between XR and Xo. [Zero is best.]

  •  Absolute difference in count (|DiC|)  mean and stand-
ard deviation of absolute difference between XR and 
Xo. [Zero is best.]

  •  Mean squared error (MSE) squared difference between 
XR and Xo. [Zero is best.]

  •  Coefficient of determination (R2) the proportion of 
the variance in XR that is predictable from Xo. [One is 
best.]

  •  Krippendorff ’s alpha (alpha) a chance-adjusted index 
of inter-observer agreement [45]. We used the mAL-
PHAK implementation in Matlab [46] treating counts 
as a ratio scale variable comparing XR and Xo. [One is 
best.]

The first four metrics were adopted since they have been 
used to compare counting algorithms on the basis of 
challenge data [14].

To visualize agreement between pairs of observers we 
used a modified version of the Bland–Altman (BA) plot 
[47] in conjunction with the histogram of count differ-
ences. For the BA plot, we plot color labelled squares 
with square color varying according to how many points 
agree on the same coordinates. This is necessary since 
we observed that in scatter plots of discrete quantities, 
points will overlap misrepresenting the true distribution 
of the data.

Finally, while evaluating agreement is interesting on 
its own, we also considered an application-driven meas-
ure of agreement by estimating a mixed effect repeated 
measure two way ANOVA on count data as employed 
in [21] for the two cultivars. By this, essentially we test 
whether any observable differences exist in between 
cultivar longitudinal trends obtaining average counts 
using a different set of observers. We treated subject ID 
(i.e. the replicate) as a random effect whilst all other as 
fixed effects. To not over-inflate degrees of freedom we 
treated time as a continuous predictor. Of particular 
interest is the interaction term between time and cultivar 
(cultivar*time hereafter), since this is the term that tests 
longitudinal differences between the cultivars.

Results
Intra‑observer variability
We assessed this via a second reading from the same 
observer using the tool. In  Fig.  2A we plot histograms 
and Bland–Altman (BA) plots for two observers on the 
datasets A, C (ie. same as A but with geometric changes). 
Considering also the corresponding rows in Table 1, we 
can see that intra-observer agreement overall is excellent, 
with the NExP observer showing slightly higher variation 
(higher standard deviation) and decreased agreement 
(alpha) compared to ExP.

Variability between tool and spreadsheet based counting
To assess whether the tool contributes to lower variabil-
ity in intra-observer measurements, in  Fig.  2B we show 
histograms and BA plots comparing counts obtained via 
the tool or spreadsheet measurements using the same, 
ExP or NExP, observer, shown respectively left and right. 
Note that deviation is higher when compared to the 
intra-observer findings using the tool alone (previous 
paragraph). It appears that the tool has less effect (smaller 
deviation) to an ExP, whereas it seems to help reduce 
variability for NExP. This adheres to comments of NExP 
observers stating that when leaf numbers are high, and 
plant structure appears complex, it is hard to keep count-
ing the leaves manually without visual reference resulting 
in frequent restarts of counting (even 3 times). We note 
that the tool retains visible the placed dots to precisely 
help visual memory. The same conclusions can be drawn 
from the statistical numbers shown in Table 1, however 
with slightly decreased agreement in the NExP observer.

All the results presented in the following refer to tool 
based annotations.

Inter‑observer variability
To assess inter-observer variability we selected one expe-
rienced observer as a reference and compared against 
other ExP and NExP observers (a total of 9), which allows 
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us to be concise (e.g. by showing representative compari-
son pairs instead of all possible combinations). Although 
this approach does not take into account observation 
error of the reference observer, the chosen observer had 
the smallest intra-observer variation (see entry marked 
with a ‘[Reference  observer]a’ in Table 1.)

Figure 3A and B visualize inter-observer agreement in 
the case of RPi and Canon, whereas Table 1 offers statis-
tics. Overall we see that agreement is excellent independ-
ent of experience. At times experienced observers appear 

to disagree more particularly when resolution is higher. 
This is likely attributed to how experienced observers 
appreciate new leaf emergence and particularly if they 
are trained to see it or not.

Influence of resolution on intra‑observer variability
This variation among experienced observers becomes 
also evident when comparing the same observer and their 
annotations when resolution alters. The ExP observer 
(who is also the reference) tends to underestimate when 
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Fig. 2 Intra-observer variability. A Intra-observer variability of experienced (left: A1) or non-experienced (right: A2) observers in RPi. B Influence of 
the tool in intra-observer measurements in experienced (left: B1) or non-experienced (right: B2) observers in RPi

Table 1 Measurement of agreement between experienced and non-experienced observers

For shorthand definitions see text. For DiC and |DiC| average and standard deviation are reported. Note that these correspond also to bias and limits of agreement 
(when standard deviation is multiplied by 1.96) of the Bland–Altman plots reported. ↓ means lower is better, whereas ↑ the opposite
a This experienced observer is noted and used as the reference observer for the remaining analysis throughout the paper

DiC ↓ |DiC| ↓ MSE ↓ R2↑ Alpha ↑

Intra-observer (RPi) tool

Experienced [The reference  observer]a 0.10 (0.54) 0.29 (0.47) 0.307 0.980 0.987

Non-experienced 0.13 (0.77) 0.42 (0.65) 0.600 0.960 0.981

Tool versus visual (RPi)

Experienced 0.00 (0.64) 0.33 (0.55) 0.415 0.970 0.986

Non-experienced 0.23 (0.82) 0.46 (0.71) 0.730 0.950 0.977

Inter-observer (RPi) tool

Experienced 0.07 (0.65) 0.37 (0.53) 0.423 0.974 0.980

Non-experienced 0.49 (0.76) 0.60 (0.67) 0.815 0.962 0.962

Inter-observer (Canon) tool

Experienced 0.55 (0.74) 0.63 (0.68) 0.861 0.969 0.959

Non-experienced 0.23 (0.63) 0.37 (0.56) 0.450 0.977 0.976

Intra-observer across resolution (RPi and Canon) tool

Experienced 0.57 (0.87) 0.68 (0.79) 1.100 0.950 0.965

Non-experienced 0.40 (0.70) 0.51 (0.62) 0.650 0.973 0.977

Citizens inter-observer (RPi) zooniverse

Experienced versus consensus (average) 0.53 (0.77) 0.62 (0.69) 0.869 0.962 0.960

Experienced versus consensus (max) 0.08 (0.82) 0.45 (0.69) 0.684 0.957 0.971

Consensus (average) versus sing. random 0.00 (0.78) 0.42 (0.65) 0.607 0.960 0.970
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resolution is lower. Whereas the NExP observer shows 
less under-estimation and higher agreement. It appears 
that NExP observers may miss young leaves independ-
ent of resolution (as they are not trained to see them) 
whereas the ExP observer misses them only on lower 
resolution.

Influence of observer variation in longitudinal analysis
In Fig. 4 we show per-day average leaf count for each cul-
tivar (i.e. averaging across replicates) when using annota-
tions from different sets (and numbers) of observers for 
the RPi data. The top row refers to using a single ExP or 
NExP observer i.e. averaging within the population of 
each cultivar (panel A); whereas the middle row refers 
to a group of observers within their expertise, averaging 
first across observer annotations, and then across repli-
cates (panel B). Panel C is similar to B but averages across 
all observers. The plots show average leaf count (within 
the population of each cultivar) and 1 standard deviation 
(shading) from the mean of the population. It is evident 
that given the effect size of the chosen cultivars, trends 
of average leaf count are expected even when using a sin-
gle observer, albeit the ExP observer shows less variation. 
When combining observations across a group of observ-
ers trends still show even clearer and one may even argue 
that averaging across NExP tends to perform even better 
than a single NExP observer (compare panel B and A).

In Table 2 the results of the statistical ANOVA experi-
ment are shown focusing only on the interaction term of 
interest (time*cultivar). We can see that in all cases the 
interaction is significant (p ≤ 0.05) confirming the visual 
findings of Fig. 4 and analyzed above. Note that although 
the smoothing effect is evident in the plots, when using 
more observers slightly increases the p value (decrease 
of the F score). This could be attributed to the fact that 
when using a single observer their behaviour (e.g. ten-
dency to under-estimate) may be considered a fixed 
effect which is captured in the intercept, whereas using a 
population of observers (even of the same expertise) this 
may not be captured by the specification of the ANOVA 
model.

Time results
Overall, we find that on average observers using the tool 
spent 48 min to annotate 130 plants for an average of 21 s 
per plant. Observers using the spreadsheet took on aver-
age 42  min. These findings were obtained by recording 
start and stop times of 5 observers in a controlled set-
ting and provide aggregate timing information across an 
annotation task.

On the other hand, by keeping track of time when 
annotations were placed using the tool, more precise per 
leaf timing annotations were obtained (see “Methods”). 
Since this approach assumes that observers continu-
ously label leaves, which may not hold if they take a break 
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whilst labeling a plant, times greater than 200 s were con-
sidered outliers and were excluded from analysis.

Recording the time required to annotate a plant, we 
found that there is no statistical difference between expe-
rienced and non-experienced observers (p value 0.245). 

On average, within the 21 s required to annotate a plant, 
only 8.5s were used to actually complete the task. (In gen-
eral, an annotator takes 1.10 ± 2.15 s per-leaf ). We argue 
that annotators use the remaining time to assess how to 
annotate a plant and evaluate the quality of their own 

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
le

af
 c

o
u

n
t

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
le

af
 c

o
u

n
t

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
le

af
 c

o
u

n
t

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
le

af
 c

o
u

n
t

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
le

af
 c

o
u

n
t

0 2 4 6 8 10 12 14 16 18 20 22 24
Time

0

2

4

6

8

10

12

14

16

18

20

A
ve

ra
g

e 
le

af
 c

o
u

n
t

A1 A2

B1

C1

B2

D

14

Fig. 4 Average longitudinal counts. Average longitudinal count curves (solid) of the two cultivars [red: col-0; blue: pgm] and 1 standard deviation 
(shaded area), shown in A relying on a single experienced (left: A1) or non-experienced observer (right: B1); B relying on all experienced (left: B1) or 
non-experienced (right: B2) observers; C relying on all together; and in D relying on the consensus citizen



Page 9 of 14Giuffrida et al. Plant Methods  (2018) 14:12 

work. In fact, several annotators were double-checking 
their work after they finished to annotate all the leaves. 
We found this by analysing the timestamps recorded for 
each annotation. For some plants, the last annotation was 
placed after 40 min from the first one on the same image. 
Moreover, we also found no correlation between errors 
and time. Specifically, comparing the leaf count with the 
reference expert, the DiC is not affected over time.

Simulating a citizen‑powered study
Given the number of available observers on RPi (9 
observers) and the a priori knowledge of their experi-
ence, it is of interest to explore: (i) the effects of using 
multiple observers for phenotyping by reducing their 
load (i.e. not having to annotate all images but a fraction 
of them) and consequently; (ii) the potential of using citi-
zen-powered research platforms for phenotyping (where 
experience could be an unknown factor).

At first instance we wanted to simulate how many 
annotations we need to still maintain the phenotyp-
ing findings of the previous section: i.e. that there is 
an effect between time and genotype in the ANOVA 

setup. For this purpose we set-up a Monte Carlo simula-
tion study that at each trial randomly draws a sampling 
matrix with K observations per time point. For exam-
ple, for two observations per time point, this matrix 
has K = 2 ones per row (a row is an observation) for a 
total of 260 ones (the rest being zeros). The placement 
of ones select from which annotator an observation is 
obtained for this time point. For more than 1 annota-
tion per time point (i.e. plant image), annotations across 
observers are averaged.

We varied K = 1, 2, 3 drawing from all available anno-
tators (n = 9) or only from experienced (n = 5) or non-
experienced observers (n = 4) to inspect the influence of 
mixing experience in annotations in the overall result. At 
each trial we run the ANOVA experiment and record the 
p value of the interaction term (time*cultivar). We draw 
500 trials for each variation of setup (K and the observer 
groups) and finally obtain summary statistics of the dis-
tribution of the p values among the 500 trials, namely 
minimum, maximum, mean, standard deviation, and 
kurtosis (a notion of symmetry and normality).

Table 3 reports the findings of this study. Overall we see 
that at no point, independently of the number of anno-
tations used or the experience of observers, the p value 
is not statistically significant (the max p value is always 
below the significance threshold). This is telling since 
even 1 annotation is enough for the effect size observed 
in these cultivars. With 1 annotation per time point, with 
9 observers this would have an effect of reducing anno-
tation effort per-observer to 11.1% of the dataset (i.e. 
14–15 plants per each observer). As expected the more 
observers the better; but sampling only from experienced 
observers did not necessarily outperform sampling only 
from non-experienced ones. Given the leptokurtic char-
acteristic of these distributions (high kurtosis), the distri-
butions are highly peaked around the mean with values 
concentrating around these. Overall, while the max 

Table 2 F and p values for the ANOVA tests corresponding 
to the plots in Fig. 4

Only time*cultivar interaction is shown corresponding to the factor of interest 
(longitudinal trend). Results with ‘All’ and consensus citizen average (or max) 
across per-plant observations

Sum sq. F p value

A single ExP 47.816 43.775 0.000167

A single NExP 47.170 30.017 0.000588

All ExP 56.264 34.661 0.000367

All NExP 49.533 29.116 0.000649

All observers 53.219 32.280 0.000464

Consensus citizen (average) 66.923 19.044 0.0024

Consensus citizen (max) 76.855 23.713 0.0012

Table 3 A simulated citizen-powered experiment. p values corresponding to an ANOVA test randomizing the number 
of observations available per each plant at a specific time point

Process is repeated sampling from any of the observers (i.e. the sampling may contain a mix of experienced and non-experienced observers) or only from experienced 
(ExP) or non-experienced (i.e. NExP) ones

K Min Max Mean Std Kurtosis

Any 1 0.00003 0.00819 0.00124 0.00113 10.34

Any 2 0.00002 0.00729 0.00120 0.00112 8.98

Any 3 0.00010 0.00235 0.00061 0.00032 6.49

ExP only 1 0.00000 0.00726 0.00102 0.00103 9.58

ExP only 2 0.00004 0.00306 0.00057 0.00040 9.29

ExP only 3 0.00008 0.00150 0.00047 0.00021 5.35

NExP only 1 0.00008 0.00378 0.00100 0.00065 5.71

NExP only 2 0.00023 0.00174 0.00078 0.00028 3.49

NExP only 3 0.00033 0.00124 0.00069 0.00015 3.19
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indicates the worst expected result, results around the 
mean are to be expected as more typical.

Results from the citizen‑powered study
The study was launched on May 1st 2017, and by June 
1st, approximately 5000 user annotations were available 
on a dataset of 1248 images, including the 130 RPi images 
used in this paper, with each image having at least 3 user 
annotations. Data were extracted from the Zooniverse 
database and a similar statistical analysis as to the one 
outlined above was carried out.

Of the 5000 annotations 4 Zooniverse users were 
responsible for annotating close to 10% of the data, as we 
can see in Fig. 5A. Most users contribute few annotations 
(long tail to the right), and not surprisingly most of the 
users are logged in (shown as black stem line without a 
marker in Fig. 5A), which implies that they are frequent 
contributors to the platform.

Of particular interest is to explore if the self-reported 
confidence (answering the question on whether they 
believe they have annotated all leaves) relates to the 
spread of leaf counts among users for each plant. Fig-
ure  5B shows a two dimensional histogram of the per-
plant standard deviation of the reported leaf count 
among the users with none referring to 0 standard devia-
tion (i.e. annotations agree fully) and the average confi-
dence (averaging the confidence question) for each plant 
of the 130 used in this study. An average of 3 shows high 
confidence (y-axis) versus an average of 1 low confidence 
(y-axis). Color encodes probability of occurrence. Users 

tend to agree with each other and their self reporting of 
confidence appears to be consistent with their spread in 
counting leaves, since the upper left quadrant sums to 
approximately 70% of occurrences.

We then estimated a consensus citizen by averaging 
counts across the annotated counts for each plant. We 
compared this consensus against the reference observer 
(from our controlled study) and a random single selection 
of counts, which can be seen as selecting one count per 
plant out of the 3 citizen provided counts (shorthanded 
as sing. random in Table 1). The results of this analysis are 
shown in Fig. 5C and D respectively. We see what there is 
some variability among the reference observer and con-
sensus citizen (Fig.  5C), with the latter underestimating 
counts (see also related entries of DiC in Table 1). On the 
other hand variability appears to be smaller within citi-
zens (c.f. Fig. 5D and entries in Table 1).

Admittedly of most interest is to see if plain citizens 
can be used for actual phenotyping. We use the counts 
of the consensus citizen and plot as previously aver-
age (and one standard deviation) per cultivar counts as 
a function of time in  Fig.  4D. We can see that this plot 
closely resembles the others and particularly the one of 
using only non-experienced observers in our controlled 
study. Equally the corresponding ANOVA experiment 
(last row in Table  2) shows exactly the same findings 
since using the consensus citizen counts yields a p value 
still statistically significant, albeit larger compared to the 
one of the controlled experiment. However, a key differ-
ence between the two exists: in our controlled study all 
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observers rated all images, so perhaps fixed effects of 
each observer may be captured in the intercept. Instead 
in the citizen experiment all counts come from a large 
pool of observers. In fact, when we compare the p value 
of the consensus citizen (p = 0.0014) it is within the min-
max bounds we find in our simulated study reported in 
Table 3.

Post-hoc, i.e. knowing that citizens under-estimate, 
under-estimation reaches 0 if we use the maximum 
across annotated counts (instead of average), and sev-
eral other metrics improve including the p value of the 
ANOVA. In Tables  1 and 2 this is shown as consensus 
(max).

Variability between algorithmic leaf count and experts
In addition to manual counting, we also tested a well-
known leaf counting algorithm [15, 21] to assess whether 
algorithm error is within (or outside) human variation.

For this experiment, we used the plant images in [21], 
with annotations performed by experts not involved in 
other aspects of this study. Overall, this dataset contains 
1248 individual images of plants, taken from five differ-
ent cultivars (col-0, pgm, ein2.1, ctr, and adh1). Specifi-
cally, images of ctr, adh1, and ein2.1 cultivars were used 
as training set (728 images in total), whereas the images 
of pgm and col-0 cultivars, which were also used in this 
study, were employed as testing set (130 images in total). 
From the training images, we learned a plant descriptor 
that derives image features and the projected leaf area 
to learn a non-linear model to predict the leaf count. 
It is noteworthy that the training set contains cultivars 
not included in the testing set, which makes this learn-
ing protocol the most stringent condition as the algo-
rithm has never seen the mutants. After the model was 
trained, we calculated the evaluation metrics in [21] in 
the training (728 images) and testing sets (130 images). 
In addition, since the expert observer that labeled the 
images used to train the algorithm was not part of this 
study, we also computed the disagreement between this 

expert and the reference observer used throughout this 
study.

As shown in Table 4, the algorithm learns well (agree-
ment between algorithm and annotator on the 728 
training images the algorithm was trained on). When 
predicting counts on the 130 test images, the algorithm 
performs slightly worse when compared with the same 
annotator involved in labeling the training set (mid-
dle column). However, we can see that the algorithm is 
within inter-observer variability which compares two 
expert annotators (last column in Table  4). While on 
average the algorithm predicts the correct leaf count 
on some images (mean close to zero) it appears that 
it is over- or under-estimating counts on some, which 
explains the high standard deviation and high MSE. We 
note that here the algorithm carries two sources of varia-
tion (error): one of the annotator and one of the learning 
process itself. The latter can be minimized, but the for-
mer unfortunately is harder to do so unless a mixture of 
annotators is used.

Discussion and conclusion
In the following, we discuss the findings of our study, 
where we investigated observer variability for an annota-
tion task being deliberately chosen to be simple to under-
stand and perform for human annotators. Clearly, not 
all of these findings generalize to all (possible) human 
annotation tasks. Findings on ‘negative effects’, i.e. factors 
increasing annotator variability, like fatigue, lack of suit-
able annotation tools etc. can be expected to be also pre-
sent for harder annotation tasks being more challenging 
for humans. They are expected to generalize well. How-
ever, ‘positive effects’, e.g. observed discriminative power 
of human annotations for the investigated task, cannot 
as easily be generalized to other, especially more difficult 
tasks.

In this study, we showed that intra-observer variability 
remains low with experienced observers, but non-expe-
rienced ones tend to vary more in their second repeat 

Table 4 Algorithmic leaf counting results obtained using the method in [15]

Four metrics are reported. We first compare between the algorithm and the 728 images in the training set (ie. how well the algorithm learns). Then we compare how 
well the algorithm predicts counts on a testing set of 130 images (also used in this study) comparing the algorithm with the counts of the annotator (that also was 
involved in deriving annotations for the training set). Lastly we compare the annotator (the data of which we used to train the algorithm and was not involved in this 
study) with the reference observer used throughout in this study

Algorithm versus annotator Algorithm versus annotator Annotator versus reference

Training error Testing error Inter‑observer error

DiC ↓ 0.00 (1.07) −  0.04 (1.31) 0.21 (0.75)

|DiC| ↓ 0.61 (0.88) 0.88 (0.96) 0.46 (0.62)

MSE ↓ 1.163 1.700 0.600

R2↑ 0.933 0.895 0.964
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reading using a visualization tool. Our annotation tool 
helps to retain mental memory and to reduce fatigue 
overall lessening the potential for errors when plants 
become larger and have more leaves. At the same time 
we showed that higher image resolution helps, but not 
always with the same effect: higher resolution aids the 
experienced user to find more of the smaller leaves, but 
non-experienced ones missed them more often indepen-
dently of resolution. Inter-observer variability is not sig-
nificantly greater than intra-observer variability. Overall 
observers tend to be within plus/minus one leaf almost 
80% of the time.

This agreement seems appealing but it might be ran-
dom in nature and we explored if it affects the use of 
observers in actually identifying group differences in 
longitudinal counts. Repeat statistical tests showed that, 
when we use one or more experienced or non-experi-
enced observers, we still come to the same statistical con-
clusion using an ANOVA test on the same longitudinal 
cultivar comparison: we find, as expected, differences in 
trends between col-0 and pgm as reported previously on 
the same data [21]. Whether we use only experienced or 
non-experienced observers has minimal effects on the 
statistical inference of the test.

Encouraging are the investigations using simulated 
and real data from citizen-powered experiments. In real 
experiments we cannot ensure the composition (in exper-
tise) of the participating users and neither we can assume 
that the same user will annotate all the data. However, 
our analysis on simulated data (where we can control 
the composition) showed that having even 1 annotation 
per plant can be sufficient to arrive to the same statistical 
conclusion (differences in cultivar trends) but of course 
having more is better, reducing variation. These find-
ings held also in the real citizen-powered experiment 
based on the Zooniverse platform. Leaf counting based 
on algorithms while showing promise and progress does 
not yet meet human performance necessitating further 
investigation in the area; thankfully, collation studies 
[14] and challenges (e.g. the counting challenge of the 
CVPPP workshop series https://www.plant-phenotyping.
org/CVPPP2017-challenge) on open data [11] will help 
advance the state-of-the-art.

This paper points to several potential areas for further 
research. Variability will be present in annotations and 
we can either obtain a better consensus, learn to ignore 
this variability, or alter the annotation task to minimize 
variability. In this study consensus was obtained through 
averaging across annotations and treating time points 
independently, but alternative mechanisms can be used 
to establish more consistent longitudinal counts. For 
example, one can adopt several other consensus 
approaches that are data-agnostic [48] or if we assume 

that leaves always emerge or remain the same in succes-
sion of images but cannot disappear, consensus can be 
derived using a dynamic filtering approach. Alternatively, 
machine learning algorithms can be used to learn directly 
from such repeated and imprecise (in machine learning 
speak: noisy) annotations potentially also obtaining con-
sensus estimates which should also help eliminate 
observer bias. However, in machine learning much effort 
has been devoted to noisy annotations in classification 
tasks [37, 38] but in regression is a yet unexplored area. A 
more radical approach, is to alter the design of the anno-
tation task completely: for example, users can be shown 
pairs of images and can be asked to identify only ‘new’ 
leaves (if any at all). Irrespective of the design of the 
annotation task, minimizing the amount of data requir-
ing annotation by selectively displaying (to the observers/
annotators) only images that do need annotation is 
always desirable. This has strong links to active (machine) 
learning [49] which displays images that are the most 
informative from a machine learning perspective. Inte-
grating this may be possible within a controlled lab anno-
tation platform (as for example with the CellProfiler [49] 
software3) but doing so in Zooniverse is not straightfor-
ward as images used in the work-flow cannot be altered 
on the fly and a customized platform would be required.

Considering all these findings we can conclusively 
argue that while there is some variability among observ-
ers it is minimal when evaluating quantitative traits like 
counting objects, even of very different sizes. For the 
group (cultivar) effect sizes observed here this variability 
had no effect in statistical inference. At the same time 
common citizens, empowered by easy to use platforms, 
can greatly assist the effort of annotating images; at least, 
when the overall task is broken down in elementary sub-
tasks generally doable even by non-experts without 
detailed explanations. Then common citizens can be used 
to provide annotations and drive phenotypic analysis. 
Such annotations help to develop and evaluate auto-
mated algorithms and allow to train machine learning-
based solutions. Using such platforms a higher 
annotation throughput can be met than perhaps available 
locally in a lab, reducing significantly annotation effort.4 
It is time to consider how we can motivate the participa-
tion of citizens and design annotation tasks that can pro-
vide data of sufficient quality for other phenotyping tasks. 

3 This is planned to be made available in Phenotiki in mid 2018 for the 
counting module.
4 We emphasize that Zooniverse is not an annotation platform per se and 
any workflow presented should have a strong ethical and reward mecha-
nism to be accepted as a Zooniverse project. For tasks with a demand-
ing rate and purely annotation objective gamification and crowdsourcing 
should be selected.

https://www.plant-phenotyping.org/CVPPP2017-challenge
https://www.plant-phenotyping.org/CVPPP2017-challenge
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This will have not only an effect on phenotyping but also 
on introducing this societally important problem to the 
broad public.
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