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Abstract 

Background: Reed has high lignin content, wide distribution and low cost. It is an ideal raw material for replacing 
wood in the paper industry. Reeds are rich in resources, but the density of reeds is low, leading to high transportation 
and storage costs. This paper aims to study the compression process of reeds and the creep behaviour of compressed 
reeds, and provide theoretical guidance for the reed compressor management, bundling equipment and the stability 
of compressed reed bales.

Results: We have established a multi-layer perceptron network prediction model for the creep characteristics of 
reeds, and the prediction rate  R2 of this model is greater than 0.997. The constitutive equation, constitutive coefficient 
and creep quaternary model of the reed creep process were established by using the prediction model. The creep 
behaviour of the reed bale is positively correlated with the initial maximum compressive stress (σ0). During the creep 
of the reed, the elastic power and the viscous resistance restrict each other. The results show that the proportion 
of elastic strain in the initial stage is the largest, and gradually decreases to 99.19% over time. The viscoelastic strain 
increases rapidly with time, then slowly increases, and finally stabilizes to 0.69%, while the plastic strain accounts for 
the proportion of the total strain. The specific gravity of the reed increases linearly with the increase of creep time, 
and finally accounts for 0.39%, indicating that as time increases, the damage of the reed’s own structure gradually 
increases.

Conclusions: We studied the relationship between the strain and time of the reed and the strain and creep behav-
iour of the reed bag under different holding forces under constant force. It is proved that the multi-layer perceptron 
network is better than the support vector machine regression in predicting the characteristics of reed materials. The 
three stages of elasticity, viscoelasticity and plasticity in the process of reed creep are analysed in detail. This article 
opens up a new way for using machine learning methods to predict the mechanical properties of materials. The pro-
posed prediction model provides new ideas for the characterization of material characteristics.
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Background
In recent years, over-cultivation of forests and pas-
tures has led to enormous environmental problems [1, 
2]. Due to their high lignin content, wide distribution, 
and low cost, reeds are an excellent candidate for a raw 

material to replace timber in the papermaking industry 
[3, 4]. Reed resources are abundant but have extremely 
low use efficiency, mainly because reed processing sites 
are relatively distant from reed fields, and reed bales 
prepared for transportation are low in density [5, 6]. 
These factors result in high transportation and stor-
age costs. Therefore, it is necessary to study the reed 
compression process and the creep behaviour of com-
pressed reeds to provide theoretical guidance on reed 
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compression mechanisms, baling equipment and the 
stability of compressed reed bales [7, 8].

To date, numerous researchers have conducted exten-
sive studies on the mechanical properties of viscoelas-
tic materials. Reynolds et al. [9] examined the effects of 
compressive load and particle size on the compressibil-
ity of various varieties of smashed wheat straw. Krstic 
et  al. [10] investigated the compression properties of 
treated corn stover, grassland rush and switchgrass. 
These researchers found that when the moisture con-
tent is 16–20%, the yield strength of these materials is 
relatively low, but the particles of these materials have 
a higher compaction density. Maraldi et  al. [11] stud-
ied the effects of material, bale density, bale orienta-
tion, baling process and loading rate on the mechanical 
properties of bales. Kashaninejad M et  al. [12] estab-
lished a generalized Maxwell model and used this 
model to analyse the effects of lignocellulose content on 
the stress relaxation behaviour of 21 varieties of wheat 
straw. Nona and MD Shaw [13, 14] analysed the stress 
relaxation behaviour of straw under closed compres-
sion using a generalized Maxwell model. Maraldi et al. 
[11, 15] conducted creep and stress relaxation tests on 
straw bales moulded under compression. Based on the 
test results, these researchers established a mathemati-
cal model for straw bales. Additionally, these research-
ers noted that the creep properties of straw bales were 
directly proportional to the load. Through rheological 
tests on rice seedling stems, Scharenbroch et  al. [16] 
concluded that the occurrence of a creep process and 
the plastic strain were positively correlated with the 
creep time and initial stress affecting the rice seedling 
stems. These studies demonstrate that the compres-
sion of straw bales is time-dependent [17, 18]. How-
ever, analytical studies on the post-compression creep 
properties of tall, thick and hard stalk crops (e.g., reeds) 
have yet to be reported.

The plant material compression process is complex, 
multivariate and unpredictable [19]. Traditional predic-
tion methods are easy to implement [19, 20], but cannot 
accurately predict nonlinear systems. In addition, adjust-
ing the parameters is troublesome and time-consuming 
[21, 22]. At the same time, the problem of model predic-
tive control for nonlinear and time-varying uncertain 
systems has not been well resolved [23, 24]. As a com-
monly used prediction method, machine learning has 
good nonlinear characteristics [25, 26], convergence and 
a certain generalization ability. Therefore, machine learn-
ing technology has been widely used in the agricultural 
field in recent years [27, 28], such as the study of mate-
rial characteristics [29, 30], the control of compression 
mechanisms [31, 32] and the inspection of work quality 
[33, 34].

In order to understand the dynamic mechanical prop-
erties of the reed bales more truly, a creep model of the 
reed blocks after compression is established, and the 
compression process of the reed bales is analyzed to pro-
vide theoretical guidance for the design of the reed bal-
ing mechanism. This paper first analyses the feasibility of 
using machine learning methods to predict the compres-
sion and creep deformation of reeds with highly nonlin-
ear characteristics under the conditions of changing the 
compression time, strain value, stress and delay time of 
the material. Based on the experimental results again, a 
multi-layer perceptron (MLP) network and support vec-
tor machine (SVM) regression algorithm are used to 
establish a predictive model. Finally, the accuracy and 
stability of the model are studied by comparing the fitting 
performance of the training set of the model and the pre-
diction performance of the new conditions. This article 
opens up a new way to predict the long-term mechani-
cal properties of polymers through machine learning 
methods. In addition to various superposition principles, 
its biggest advantage compared to traditional models is 
that it can simulate the nonlinear characteristics of reed 
mechanics, it can also reduce the number of experi-
mental conditions, shorten the experimental period, 
and provide ideas for the accelerated characterization of 
long-term mechanical properties of materials.

Materials and methods
Materials
The reed samples used in this study were collected from 
Bosten Lake in the winter of 2018, as shown in Fig.  1. 
Table  1 summarizes the physical properties of the reed 
samples. The compression test results showed that the 
optimum compression with relatively low energy con-
sumption was achieved with reeds that were 0.10  m in 

Fig. 1 Experiment material
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length and had a moisture content of 17%. On this basis, 
the long reed stalks harvested were cut into 0.10 ± 0.02 m 
short reed stalks. Before the tests, the reed samples were 
air-dried in a dry environment for more than a month. 
When determining the moisture content of the reeds, 
each reed sample was first dried in an electric blast dry-
ing oven. Subsequently, the mass ( m1 ) of the reed was 
determined. 

Spray evenly according to the required moisture con-
tent (α), with a mass of m2. Put the water into a sealed 
bag, classify and mark it, and let it stand for 48 h.

where α is the moisture content, m1 is the mass of the 
reeds after drying, and m2 is the mass of water.

Test equipment
The creep properties of the reed samples were studied 
under closed compression conditions using a compres-
sion apparatus developed in-house (as shown in Fig. 2). 
The compression apparatus, made of 0.014-m-thick #45 
steel sheets, consists of a piston rod, a compression cover 
plate, and a compression box. The compression box has 
inner cross-sectional dimensions of 0.20 × 0.20  m2. The 
piston rod is 0.15  m in length. Four ribbed plates were 

(1)a =
m2

m1 +m2

× 100%

added onto the compression cover plate to prevent the 
plate from deforming under stresses. To facilitate the 
observations during the test, four rulers were adhered 
onto the inner walls of the compression box.

A UTM5305 computer-controlled electronic universal 
material testing machine (Fig.  3) was used in the tests. 
This machine has a maximum test force of 300 kN, a 
force measuring the precision of 1 N and a stress preci-
sion of 0.001 MPa. Additionally, an electric blast drying 
oven, an electronic balance, and a Vernier calliper were 
used in the tests. Moreover, according to the test require-
ments, an EDC120 digital control system, a GWB-200 
high-precision displacement calibration instrument, and 
an extensometer were used in the tests. Auxiliary tools 
used in the tests included scissors, a Vernier calliper, a 
spray bottle, and a straightedge.

Creep tests
A creep test examines the strain ( ε)–time (t) relation-
ship under a constant stress ( σ ). In essence, creep is a 
delayed material deformation process. The compres-
sion test results showed the following. For 0.05-, 0.10-, 
0.15- and 0.20-m reed samples, the 0.10-m reed sam-
ples had the highest compaction density after compres-
sion under the same conditions (feed quantity, α and 
σ ). The higher α was, the higher the compaction den-
sity was. However, high-α reeds could become mouldy, 
resulting in a decrease in the nutrient content of the 
reeds. Pre-test results showed that optimum compres-
sion was achieved for reeds with an α of 17%. In this 
study, the effects of σ on the creep properties were 
analysed. Therefore, reeds with a length of 0.1  m and 
an α of 17% were selected. These reeds were randomly 
and evenly placed in test moulds. The reeds in each 
mould had a mass of approximately 1.150 ± 0.05  kg. 
The test location was marked. During the tests, the 

Table 1 Physical properties of the reed stalks

Whole-reed 
height (m)

Sample 
length (m)

Wall 
thickness 
( ×10

−4 m)

Cross-
sectional 
area ( ×10

−5 
 m2)

α (%)

3.50 ± 0.50 0.10 ± 0.02 9.50 ± 0.50 9.00 ± 0.10 17.00 ± 0.15

Fig. 2 Compression apparatus Fig. 3 Compression test system
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reeds were compressed vertically at a loading rate of 
1.67 ×  10–3  m/s. Once the set pressure was reached, a 
constant σ was maintained for 800 s. Subsequently, the 
compression and creep tests were terminated. Table  2 
summarizes the test conditions for each group of tests. 
At least three tests were conducted under each set of 
conditions. The final test results were averaged after 
eliminating relatively large errors. All the tests were 
conducted at a room temperature of 25.2 ± 2.2 °C and a 
relative humidity of 46 ± 4%.

Data analysis
Input andoutput variables of the model
The creep properties of a linear viscoelastic material 
are generally described using the Burgers four-element 
model, which consists of a Maxwell model and a Kelvin 
model connected in series. Equation (3) shows the con-
stitutive equation for the Burgers four-element model.

where ε(t) is the ε at the time t (%), σ0 is the initially 
applied stress (Pa), Em is the instantaneous elastic modu-
lus (Pa), Ek is the delayed elastic modulus (Pa), ηk is the 
coefficient of delayed viscosity (Pa × s), and ηm is the 
coefficient of viscosity (Pa × s).

Equation (4) can be used to analyse the proportion of 
each type of ε in the vc of reeds.

The factors affecting the compression performance of 
reed include compression time, stress, strain and delay 
time. In order to reflect the elastic strain, viscoelastic 
strain and viscous strain of reed compression, the com-
pression time t, strain value ε(t) , stress σ0 and delay 
time TK are taken as the input x = [t, ε(t), σ0,TK ]

T  , 
and the elastic creep compliance Je, viscous creep 

(2)ε(t) =
σ0

Em
+

σ0

Ek
× 1− e

−
Ek
ηk

t
+

σ0

ηm
× t

(3)

Pit =
εi(t)

ε(t)
× 100% =

Ji(t)

Je(t)+ Jve(t)+ Jv(t)
× 100%

compliance Jve and plastic creep compliance Jv are taken 
as the output.

Data normalization
The range of input variables and strain results of the creep 
experiment showed that the input and output variables 
were not in the same order of magnitude. However, mul-
tiple machine learning methods, such as ANN, require 
that the weights and other parameters in the model are 
parallel in order of magnitude. If the difference of input 
variables is large, the input variables with a smaller order 
of magnitude will be covered by those with a larger order 
of magnitude during the error propagation. Furthermore, 
the effect of each input variable on the output cannot be 
rendered properly. Consequently, normalizing the input 
and output variables is crucial before modeling.

In this research, the z-score method, which is com-
monly used alongside machine learning, was considered 
to normalize the input and output variables, so that the 
mean value of each variable equals 0 while the variance 
equals 1. The method can be expressed as

where x(n)are the original samples, n = 1, 2,…, N, and N is 
the number of samples, x is the mean value of samples, S 
is the variance of samples, x̂(x) are the normalized sam-
ples. After normalization, the input variables can be 
expressed as x̂ =

[

t̂, ε̂(t), σ̂0, T̂K

]T
 , while the output vari-

ables change to Ĵ =
[

Ĵe, Ĵve, Ĵv

]

.

Multilayer perception network
Multilayer Perceptron Network (MLP) is a typical arti-
ficial neural network. In this study, MLP based on the 
back-propagation algorithm was used to train the predic-
tion model. It consists of an input layer, an output layer 
and at least one hidden layer. Training includes two pro-
cesses: signal forward propagation and error backward 
propagation. During forward propagation, input samples 
are transferred from the input layer to each hidden layer 

(4)x̂(x) =
x(x) − x̂

S

Table 2 Creep test conditions

Test No Test reed sample 
length (m)

α (%) Loading rate (m/s) Maximum 
compressive σ (Pa)

Retention time 
(s)

Feed quantity 
(kg)

Bale 
orientation

1 0.10 17 1.67 ×10
−3 3 ×10

6 800 1.150 Flat

2 0.10 17 1.67 ×10
−3 4 ×10

6 800 1.150 Flat

3 0.10 17 1.67 ×10
−3 5 ×10

6 800 1.150 Flat

4 0.10 17 1.67 ×10
−3 6 ×10

6 800 1.150 Flat

5 0.10 17 1.67 ×10
−3 7 ×10

6 800 1.150 Flat
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and output layer. Then, if the output value is not equal 
to the actual value, the backpropagation phase starts. By 
passing the output error back, the error is distributed to 
all the neural networks of the hidden layer, and the error 
of each layer of neurons is obtained as the basis for opti-
mizing the weights of the neurons. Repeat the above pro-
cess until the output error is acceptable or reaches the 
limit of the number of training iterations.

The nonlinear properties of the reed creep strain–time 
curve were considered to have initially identified the 
main structural parameters range of the MLP network, 
The range of MLP network structure hyper-parameters is 
shown in Table 3. In order to avoid unnecessarily increas-
ing the complexity of the model, the number of the hid-
den layer is set to 1 or 2. The number of neurons is setting 
from 1 to 100. Subsequently, the MLP network prediction 
model of creep properties is constructed by optimizing 
the hyper-parameters of the model.

Support vector machine regression
As one of the most common methods in the machine 
learning field, support vector machine regression (SVR) 
has shown its unique advantages in solving the problems 
of small sample, nonlinear and high-dimensional pat-
tern recognition. The basic idea of nonlinear SVR is to 
use nonlinear mapping φ to map data x to Hilbert feature 
space, then linear regression is carried out in this space. 
The kernel function k

(

xi, xj
)

= φ(xi) · φ
(

xj
)

 is used to 
realize the correspondence between linear regression in 
high-dimensional space and nonlinear regression in low-
dimensional space. A three-order RBF kernel was con-
sidered in this study. The main hyper-parameter range 
of SVR was initially identified to include C and gamma 
(Table 4).

Results
Optimization results of hyper-parameters
The cross-validation method and genetic algorithm men-
tioned in Sect.  2.3.4 were used to optimize the hyper-
parameters of the MLP and SVR machine learning 
prediction models. The results are shown as:

MLP: activation function = logistic, number of hidden 
layers = 2, number of hidden layer neurons = 8, training 
method = Adam;

SVR: C = 4298, gamma = 7.2 ×  10−4.
Figure  6 shows the ε–t curves during the creep test 

process under various σ0 s. As demonstrated in Fig. 4, the 
trends of ε were consistent during all the tests. ε changed 
at a high rate within the initial minute and subsequently 
at a decreasing rate. Overall, ε increased nonlinearly at 
a high rate initially and subsequently at a low rate. Dur-
ing this process, as a result of the internal viscosity of the 
reeds, ε continued to increase under constant σ . This pro-
cess is the creep process of the reeds. The ε values were 
calculated based on the test data using Eq. (2).

Additionally, as shown in Fig.  4, σ0 affected the creep 
properties of the reeds. The higher σ0 was, the higher the 
ultimate stable ε ( ε∞ ) was.

In order to verify the fitting and prediction perfor-
mance of the above model hyper-parameters, the creep 
curves under three loading forces are set as the training 
set, and the creep curve under another loading force is 
set as the prediction set. In addition, 10 training groups 
were also carried out. The result is shown in Fig. 5.

The blue and red lines in the Fig. are the creep curves 
predicted by MLP and SVR, respectively, and the shaded 
area refers to the predicted envelope range after 10 train-
ing sets. It can be seen that the two kinds of hyper param-
eter optimized machine learning models have good 
fitting and predictive performance on the creep curve of 
materials, and both can be used for creep performance 
prediction, but the MLP method is more accurate.

Table 3 The range of MLP network structure hyper-parameters

Hyper-Parameters Range

Activation function Logistic, Tanh, Relu

Number of hidden layers 1–2

Number of hidden layer neurons 1–10

Training method L-BFGS, SGD, Adam

Table 4 The range of SVR hyper-parameters

Hyper-Parameters Range

C 1–5000

gamma [1 ×  10−5, 0.1]

Fig.4 Reed bales vertical strain over time
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Comparison of prediction performance under different 
applied forces
The medium pressure value fluctuates. Therefore, differ-
ent applied forces will affect the compression efficiency 
of reeds, so it is necessary to further verify the prediction 
performance of MLP and SVR under different applied 
forces. During the reed compression process and the 
retention stage of the creep process, because the uni-
versal testing machine was unable to retain a completely 
constant σ , σ fluctuated during the retention stage. Fig-
ure  6(a)–(e) shows the σ–t test and prediction curve 
under different forces. As demonstrated in Fig. 4, during 
the compression process, σ changed exponentially with 
t. The compressive σ fluctuated once reaching the preset 
maximum value. Within the initial minute, σ fluctuated 
relatively significantly. As t increased, the fluctuations in 
σ gradually weakened. The average σ basically remained 
at σ0 ± 0.10 kN. In the first 60  s of the ε–t curves, the 
applied σ fluctuated relatively significantly. During this 
process, a constant σ was relatively difficult to maintain 
because of the relatively large reaction force from the 
compressed reeds as a result of the structural damage 
to and viscosity of the reeds. As t increased, the reaction 
force from the compressed reeds became relatively small, 
rendering it easier to maintain a constant σ . As a result, 
the applied σ changed smoothly. Table 5 summarizes the 
changes in impulse during the five groups of tests. As the 
maximum compressive σ increased, the corresponding 
impulse gradually increased.

As shown in Table 6, under the action of five different 
forces, the fitting curve of the MLP model is better than 
the fitting curve of the support vector regression model. 
Under the force of 160kN and 280kN, the measured coef-
ficient  R2 of the fitted curve of the MLP model is 0.9115 

and 0.9047, respectively, which means that there is a 
large deviation in the fitted curve. The fitting measure-
ment coefficient  R2 of the other three working conditions 
is greater than 0.997. At the same time, after comparing 
the MAE, RMSE, R and  R2 of the two machine learning 
methods, MLP is superior. Therefore, under the simula-
tion of the creep characteristics of reeds, the first task of 
the machine learning method is MLP.

Reed material characteristics based on MLP model
The creep model parameters fitted to the creep test data 
obtained under various σ0 s differ.Em reflects the elastic 
deformability of the reeds. The higher Em is, the lower the 
elastic deformability is, and the lower the compliance of 
the tissues inside the reed stalks is. In Table 5, Em ranges 
from 3.480 to 7.928 Pa, with an average of 5.715 Pa, an 
SD of 1.573 Pa and a CV of 27.52%. Ek ranges from 500 
to 1,166.667 Pa, with an average of 838.095 Pa, an SD of 
235.895  Pa and a CV of 28.15%. Em is lower than Ek in 
each case. This result suggests that of the internal struc-
tural models for the reeds, the elastic deformability of the 
elastic component ( Em ) is higher than that of the elastic 
component ( Ek ) in the Kelvin model. The compliance of 
the elastic component in the Kelvin model is lower than 
that of the elastic model in the Maxwell model. The fit-
ting coefficients of the MLP model are shown in Table 7.
ηm reflects the deformation-resistant viscous resist-

ance of the reeds. The higher ηm is, the higher the defor-
mation-resistant viscous resistance is, and the poorer 
the fluidity of the internal structure is. In Table  5, ηm 
ranges from 0.685 to 2.034  Pa × s, with an average of 
1.318 Pa × s, an SD of 0.474 Pa × s and a CV of 35.94%. 
ηk ranges from 41,666.667 to 61,403.509  Pa × s, with an 
average of 52,493.734  Pa × s, an SD of 9,754.204  Pa × s 
and a CV of 18.58%.
Tk reflects the time required for the components in 

the Kelvin model to reach strain equilibrium. In Table 5, 
Tk ranges from 83.333 to 52.632  s, with an average of 
65.338  s, an SD of 11.710  s and a CV of 17.92%. This 
result suggests that the average time for reaching creep 
equilibrium was 65.338 s.

As σ0 increased, Em , Ek , ηm and ηk all increased, 
whereas Tk gradually decreased. This result suggests that 
the higher σ0 was, the lower the elastic deformability was, 
the lower the compliance of the tissues inside the reeds 
was, the higher the deformation-resistant viscosity resist-
ance was, the poorer the fluidity of the internal structure 
was, the higher the stability of the moulded reed bale 
was, and the shorter the time needed to reach creep equi-
librium was.

The CV ranges from 17.92% to 35.94%, suggesting high 
dispersion. This result demonstrates relatively significant 
individual variation under various σ0 s.

Fig. 5 Comparison of MLP and SVR fitting and test results
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Fig. 6 σ–t test and prediction curve under different forces. a 120kN. b 160kN. c 200kN. d 240kN. e 280kN
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Analysis of vc and J(t)
Analysis of  vc
The vc during the creep process of the reeds consists of 
a viscoelastic vc and a viscous vc . Figure  7 shows the vc
–t curves during the creep process of the moulded reed 
bales.

As demonstrated in Fig.  7, the vc of the reeds exhib-
ited similar trends under various σ0 s. As t increased, vc 
was initially high, then deceased, and gradually tended 
to zero. Based on the changes in vc , the creep process 
can be divided into three stages. During the first stage, vc 
was high. During this stage, the deformation is mainly 

composed of elastic deformation and viscous deforma-
tion, which was mainly a result of σ0 . From a microscopic 
perspective, the macromolecular chains of the elastic tis-
sue structures (e.g., cellulose and lignin) in the reed stalks 
continued to extend, and the number of macromolecular 
bonds continued to increase. During this stage, the viscous 
creep resistance of the viscous tissue structures inside the 
reed stalks was relatively low. During the second stage, 
as t increased, vc changed at a low rate. During this stage, 
deformation consisted mainly of viscous deformation. This 
effect mainly occurred because the viscous resistance of the 
viscous tissue structures inside the reed stalks to continu-
ous deformation gradually increased. As a result, continu-
ous extension of macromolecular chains and increases in 
macromolecular bond angles inside the reed stalks were 
prevented. During the third and final stage, vc gradually 
decreased to a constant value. This stage was primarily 
characterized by irreversible plastic deformation. During 
this stage, the elastic dynamic force and the viscous resist-
ance inside the reeds gradually reached equilibrium, and 
the tissues inside the moulded reed bale formed a new 
tissue structure. In the Kelvin creep model for the reeds, 
the elastic and viscous elements are mutually constrained. 
Additionally, when the elastic dynamic force increases, the 
viscous resistance decreases, and vice versa. Finally, the 
elastic dynamic force and the viscous resistance reached an 
equilibrium.

Analysis of J(t)
Calculated by formula (7) and MLP model, the creep com-
pliance composition of the five sets of creep tests is shown 
in Table 8.

(5)εe(t) = σ0Je(t)

(6)εve(t) = σ0Jve(t)

Table 5 Impulse values under various σ0 s

σ0( MPa) 3 4 5 6 7

Impulse 
(N × s)

9.72 ×  107 1.14 ×  108 1.62 ×  108 1.94 ×  108 2.27 ×  108

Table 6 The generalization ability of two machine learning 
models

Applied 
Forces 
(kN)

Model MAE RMSE R R2

120 MLP 2.110 ×  10–3 2.692 ×  10–3 0.9992 0.9989

SVR 1.417 ×  10–4 1.612 ×  10–4 0.9941 0.7730

160 MLP 9.878 ×  10–4 1.354 ×  10–3 0.9354 0.9115

SVR 1.486 ×  10–4 1.516 ×  10–4 0.9939 0.6416

200 MLP 1.962 ×  10–3 2.539 ×  10–3 0.9989 0.9979

SVR 1.294 ×  10–4 1.374 ×  10–4 0.9851 0.7058

240 MLP 2.158 ×  10–3 2.675 ×  10–3 0.9993 0.9985

SVR 1.588 ×  10–4 1.839 ×  10–4 0.9892 0.8921

280 MLP 9.796 ×  10–4 1.157 ×  10–3 0.9252 0.9047

SVR 4.144 ×  10–4 4.378 ×  10–4 0.9885 0.8759

Table 7 Fitting coefficients for the MLP models

Test No σ0(MPa) Model coefficients

Em Ek ηm ηk Tk

1 3 3.480 500.000 0.685 ×10
6 41,666.667 83.333

2 4 4.630 666.667 0.931 ×10
6 47,619.048 71.429

3 5 5.682 1000.000 1.395 ×10
6 66,666.667 66.667

4 6 6.857 857.143 1.546 ×10
6 45,112.782 52.632

5 7 7.928 1166.667 2.034 ×10
6 61,403.509 52.632

Average 5.715 838.095 1.318 ×10
6 52,493.734 65.338

SD 1.573 235.895 0.474 ×10
6 9754.204 11.710

CV 27.52% 28.15% 35.94% 18.58% 17.92%
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Table 9 summarizes the various types of creep during 
the five sets of creep tests of the MLP model calculated 
according to Eqs. (6–7).

The proportions of εe(t) , εve(t) and εv(t) in the total ε 
can be calculated using Eq.  (7). Here, MLP is used as an 
example. Figure 8 shows the changes in the proportion of 
each type of ε in the total ε with t under a σ0 of 3 MPa. The 
left axis shows the changes in the εe(t) data. The right axis 
shows the changes in the εve(t) and εv(t) data. The propor-
tion of εe(t) was the highest during the initial stage and 
gradually decreased to 99.19% with t. As t increased, the 
proportion of εve(t) increased rapidly initially and slowly 

(7)εv(t) = σ0Jv(t)

subsequently. The proportion of εve(t) ultimately stabi-
lized at 0.69%. The proportion of εv(t) in the total ε linearly 
increased with creep t and ultimately reached 0.39%. This 
result suggests that the degree of damage to the inherent 
structure of the reeds gradually increased with t.

Discussions
Motivations
We studied the creep behaviour of reed bales under 
different holding forces. The test curves are fitted by 
Machine Learning Prediction Algorithms and Support 
Vector Machine Regression, and the constitutive equa-
tions and constitutive coefficients of the reed creep 
process are obtained. In addition, a four-element creep 
model of Reed was established using the Machine Learn-
ing Prediction Algorithms model. The results show that 
the creep behaviour of a reed bale was positively corre-
lated with the initial maximum compressive stress (σ0). 
The established Burgers four-element model was capa-
ble of simulating the creep process of reed bales. The test 
curves coincided well with the model-simulated curves. 
Reed bales were found to exhibit viscoelasticity. During 
the creep process, the elastic dynamic force and the vis-
cous resistance were mutually constrained. The ε of reeds 
was composed of elastic, viscoelastic and plastic ε. The 
creep process could be divided into three stages. Dur-
ing the first stage, σ0 was constant. During the second 
stage, ε rapidly increased within one minute. During the 
last stage, ε slowly increased with t, and the displacement 
ultimately reached a stable value.

Limitations
The creep characteristics of the reed are closely related 
to the compression time, strain value, stress and delay 

Fig. 7 vc–t curves during the creep tests under various σ0 s

Table 8 Summarizes the compositions of J(t) during the five 
groups of tests

σ0 Je(t) Jve(t) Jv(t)

3 0.287 0.002× 1− e
−0.012t

1.46× 10
−6

4 0.216 0.0015× 1− e
−0.014t

1.0745× 10
−6

t

5 0.175 0.0014× 1− e
−0.019t 7.762× 10

−7
t

6 0.147 0.00083× 1− e
−0.015t 5.973× 10

−7
t

7 0.126 0.00086× 1− e
−0.019t 4.916× 10

−7
t

Table 9 Various types of ε during the five groups of creep tests

σ0 εe(t) εve(t) εv(t)

3 0.861 0.006× 1− e
−0.012t

4.381× 10
−6

t

4 0.864 0.006× 1− e
−0.014t

4.298× 10
−6

t

5 0.875 0.007× 1− e
−0.019t

3.881× 10
−6

t

6 0.882 0.005× 1− e
−0.015t

3.584× 10
−6

t

7 0.882 0.006× 1− e
−0.019t

3.441× 10
−6

t

Fig. 8 Proportion of each type of ε in the total ε during stress 
relaxation under a σ0 of 3 MPa
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time, showing strong nonlinear characteristics. The MLP 
model is better than the SVR model in predicting MAE, 
RMSE, R and  R2 under different forces, and the  R2 of 
MLP is all greater than 0.9. The method described in this 
study is an application case of machine learning technol-
ogy in the study of material properties, which can provide 
new research ideas for the accelerated characterization of 
material mechanical properties.

Although a new idea for predicting the compression 
creep performance of reeds is proposed, the author 
believes that the current research still has the following 
limitations:

• Few experimental working conditions are considered, 
and the total data set is relatively small. With larger 
data sets, the accuracy and reliability of machine 
learning models such as MLP and SVR will be 
improved;

• Only four more important creep-related variables 
are considered, including compression time, strain 
value, stress and delay time. However, the creep char-
acteristics of reeds are more complicated. Therefore, 
follow-up research should involve more variables to 
further optimize the MLP prediction model.

Future work
In order to further improve the fitting accuracy of the 
training set, the hyper parameter optimization method 
of the machine learning model combining genetic algo-
rithm and k-fold cross-validation will be studied:

• Introduce more variables, such as pattern size and 
material thermal properties, to optimize the predic-
tion model more comprehensively;

• Enhance the inherent laws of patterns under differ-
ent working conditions, further strengthen nonlinear 
characteristics, and improve prediction accuracy.

Conclusions
This study uses a series of machine learning methods 
(based on MLP and SVR) to predict the compressive 
creep deformation of reeds. Considering variables such 
as compression time, strain value, stress and delay time, 
a compression creep test was carried out on the reed 
samples. Using the established MLP model to analyze 
the parameters of creep rate and creep compliance, 
it verified the model’s fitting accuracy in the train-
ing set and its predictive ability under new conditions. 
According to the results, the following conclusions can 
be drawn: There is an irreversible plastic strain in the 
creep process of the reed block, and the creep process 

is a process in which elastic dynamics and viscous 
resistance are restrained by each other. In the experi-
ments of different loading forces, the creep process 
trend of reed is the same. The strain change rate is fast 
in the first minute, and then it becomes slow, showing 
a non-linear growth trend of fast first and then slow 
overall. Different loading stresses have an impact on 
the creep of reeds. The greater the loading force, the 
greater the final stable strain value. According to the 
creep characteristic parameters, the Burgers four-ele-
ment model established by the virtual prototype soft-
ware can simulate the creep process of the reed block. 
When the MLP model simulates the strain of the reed 
under different pressures, the  R2 is greater than 0.9, and 
the simulation curve has the same trend as the experi-
mental curve, and the overlap effect is good. The stress 
of reed creep is mainly composed of elastic strain, vis-
coelastic strain and plastic strain. Among them, the 
elastic strain accounts for the largest proportion, and 
it decreases with the increase of time. The viscoelas-
tic strain first increases and then becomes stable with 
the increase of time. The strain increases linearly with 
time, and the damage to the structure of the reed grad-
ually increases. The method described in this study is 
an application case of machine learning technology in 
the study of material characteristics, which can provide 
new research ideas for the accelerated characterization 
of material mechanical properties.
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