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Abstract 

Background: Realizing imaging detection of water and nitrogen content in different regions of plant leaves in‑site 
and real‑time can provide an efficient new technology for determining crop drought resistance and nutrient regu‑
lation mechanisms, or for use in precision agriculture. Near‑infrared imaging is the preferred technology for in‑situ 
real‑time detection owing to its non‑destructive nature; moreover, it provides rich information. However, the use of 
hyperspectral imaging technology is limited as it is difficult to use it in field because of its high weight and power.

Results: We developed a smart imaging device using a near‑infrared camera and an interference filter; it has a low 
weight, requires low power, and has a multi‑wavelength resolution. The characteristic wavelengths of the filter that 
realize leaf moisture measurement are 1150 and 1400 nm, respectively, the characteristic wavelength of the filter that 
realizes nitrogen measurement is 1500 nm, and all filter bandwidths are 25 nm. The prediction result of the average 
leaf water content model obtained with the device was  R2 = 0.930, RMSE = 1.030%; the prediction result of the aver‑
age nitrogen content model was  R2 = 0.750, RMSE = 0.263 g.

Conclusions: Using the average water and nitrogen content model, an image of distribution of water and nitrogen 
in different areas of corn leaf was obtained, and its distribution characteristics were consistent with the actual leaf 
conditions. The experimental materials used in this research were fresh leaves in the field, and the test was completed 
indoors. Further verification of applying the device and model to the field is underway.
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Background
Water and nitrogen are indispensable components for 
corn (Zea mays) growth and development. Water is 
essential for photosynthesis and is the main factor affect-
ing metabolism [1]. Nitrogen is the main component of 
proteins and hence affects enzyme activity; it is also an 
essential element in the chlorophyll molecule. The nitro-
gen cycle plays a key role in the growth of corn, affect-
ing morphology and yield [2]. The water content of corn 

leaves is the best indicator of the level of water profit 
and loss by corn [3], whereas corn nitrogen status is an 
important index of growth and yield of corn [4]. Achiev-
ing rapid real-time non-destructive testing of the water 
and nitrogen content in corn leaves has significance in 
research pertaining to leaf photosynthesis, diagnosing 
field crop growth, monitoring drought, and predicting 
crop yield [5].

Due to the electromagnetic absorption and scatter-
ing characteristics of the material, traditional spectros-
copy technologies cannot be used for imaging detection 
in different areas, whereas near-infrared band tech-
nologies can be easily used for non-destructive testing. 
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Hyperspectral imaging technology has been widely used 
in food [6], medicine [7], and crops [8] in recent years, 
owing to its fast and accurate characteristics. Applied 
research in crops mainly focuses on testing indicators 
of plant leaves, including water, nitrogen, chlorophyll, 
and other indicators [9]. Clevers et al. [10] collected data 
in the 970–1200  nm spectral region, which is sensitive 
to water absorption characteristics and can be used to 
accurately predict the water content in the plant canopy. 
Khan et al. [11] used hyperspectral analysis to analyze the 
effect of temperature on the nitrogen content in wheat 
leaves. The results showed that temperature has a neg-
ligible effect on the predicted value of nitrogen content. 
However, the use of hyperspectral instruments mainly 
focuses on obtaining the average value on the sample 
surface under laboratory conditions. Only a few studies 
have realized imaging analysis of the chemical composi-
tion of different sample surface areas in laboratory set-
tings. There is limited literature detailing the realization 
of crop leaf water, nitrogen, and other chemical compo-
nents in living organisms using in-situ imaging detection. 
The main reason for this is that a hyperspectral instru-
ment with a high wavelength resolution and low lumi-
nous flux needs an external light source requiring high 
power consumption and a high intensity source to obtain 
the leaf spectrum data. Factors such as complex instru-
ment accessories, large volume, heavy weight, and low 
luminous flux restrict the application of hyperspectral 
imaging. Hence, it is difficult to achieve in-situ imaging 
detection in the field using hyperspectral imaging.

Near-infrared cameras are characterized by a small 
size, small weight, high luminous flux, and high spatial 
resolution. Furthermore, the cameras have an adjustable 
aperture and a large-diameter lens, which allows online 
measurement without the need for an auxiliary light 
source [12]. However, general near-infrared cameras do 
not have wavelength resolution capability; these cameras 
need to have band-pass filters installed with different 
center wavelengths, thus becoming multispectral cam-
eras with capability for a specific wavelength resolution. 
In the study of Bing Lu et  al. [13], the imaging results 
of an ordinary camera with a filter and a hyperspectral 
instrument were compared. The results showed that the 
near-infrared camera, which was derived from a com-
mon camera combination filter, and the hyperspectral 
imaging instrument exhibited the same accuracy. Kobori 
and Tsuchikawa [14] obtained hyperspectral images at 
1450 nm and achieved a high-precision prediction of leaf 
water content using the near-infrared camera with a fil-
ter, indicating that near-infrared chemical imaging tech-
nology can be used as a novel method to monitor plant 
physiological indicators. Widjaja Putra and Soni [15] 
evaluated vegetation index under different lighting using 

a red/green/blue (RGB) camera combination filter and 
cameras installed with a near-infrared red (NIR-R) and 
near-infrared red-edge (NIR-RE) band filter. The results 
showed that the overall performance was better for the 
camera installed with the NIR-RE frequency band filter.

In this study, we constructed a near-infrared imaging 
device, which is suitable for in-situ inspection of blades 
on site. Based on simulation analysis of the hyperspec-
tral data of fresh corn leaves, the key parameters such as 
the characteristic wavelength position, quantity, band-
width, and offset limit required for leaf nitrogen and 
leaf water measurement were obtained. According to 
the key parameters of the filter, bandpass filters with dif-
ferent center wavelengths were installed in front of the 
near-infrared spectrometer, and a near-infrared imag-
ing device with wavelength resolution capability was 
obtained. In this study, multispectral imaging technol-
ogy was used to determine the visual expression of water 
content and nitrogen content in maize leaves. We aimed 
to use near-infrared imaging to characterize the compre-
hensive index of drought resistance of crops, based on 
the average water content and the difference (WV, WM, 
DVM) and dynamic difference values (∆WV, ∆WM, 
∆DVM) of leaf veins and mesophyll during the critical 
growth period.

Methods
Material selection and test
We used a Gaia Sorter near-infrared hyperspectral 
instrument (Fig.  1). The performance configuration and 
working parameters of the instrument were as follows: 
a uniform light source composed of four bromine tung-
sten lamps, a 56-mm fixed-focus near-infrared cam-
era lens, an N17E spectrometer, an AVT detector, and a 
computer box. The working principle of the hyper-spec-
trometer involves placing the experimental sample on an 
electronically controlled mobile platform and obtaining 
the hyperspectral cube information of the test sample 
using the push sweep method. We used an XEVA-0538 
near-infrared camera (Xenith, Belgium) with a T2SL 
near-infrared focal plane array and InAs/GaSb type two 
superlattice detectors. The filter used was a traditional 
coated bandpass filter (Edmund, BURRINGTON, USA), 
with 1150  nm and 1400  nm center wavelengths, 25  nm 
bandwidth, 50  mm diameter, band frame, and optical 
density greater than 4.0. The near-infrared light source 
was a 100  W Phillips infrared bulb. In this experiment, 
the nitrogen analyzer was FOSS automatic Kjeltec TM 
8400 (FOSS, Denmark). The accuracy of the electronic 
balance used in this experiment was 0.0001 g (Sartorius 
Instrument Systems Ltd., Beijing, China).

The experimental samples were collected from differ-
ent test fields at the Shang Zhuang Experimental Station 
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of Chinese Agricultural University. Corn leaves at differ-
ent stages, including the seedling, jointing, heading, fill-
ing, and maturity stages, were selected. Leaves with a flat 
surface and intact mesophyll tissue were selected, stored 
in a fresh-keeping bag, and labeled. In total, 60 samples 
were collected.

After sampling, the samples were immediately sent 
to the hyperspectral laboratory of China Agricultural 
University for hyperspectral image acquisition and sub-
sequent processing. First, the power was turned on and 
Spec View software (Spec View Ltd., Uckfield, UK) was 
run. After the system had warmed up for 30 min, a series 
of operations, such as focusing, were performed. The 
final determination of the motorized stage moving speed 
was 0.42 cm/s and the exposure time was 0.09 s. The dis-
tance between the sample and the hyperspectral camera 
was set to 30 cm, and the left and right, up and down, and 
illumination angles of the four lamps were adjusted to 45° 
and 75°, respectively.

The Kjeldahl method was used for measuring leaf 
nitrogen content. After image acquisition, the main leaf 
vein and the leaf mesophyll tissue were separated, their 
quality was measured, and then they were cut into pieces 
and mixed evenly for measurement. A uniformly mixed 
sample (0.6 g) was heated at 420 °C for 30 min and two 
copper sulfate (Zouping Tengchuang Biotechnology Co., 
Ltd., Shandong, China) and potassium sulfate (Zouping 

Tengchuang Biotechnology Co., Ltd.) catalytic tablets 
were added to accelerate digestion until the liquid was 
completely clear. After cooling, distillation titration was 
performed using the FOSS nitrogen analyzer. A blank 
control sample was tested before using the analyzer on 
samples.

The specific process and results of leaf water measure-
ment have been mentioned in another article to be pub-
lished in November 2021. Therefore, herein, we mainly 
introduce the key parameters for achieving leaf nitrogen 
measurement.

Processing method
Hyperspectral image correction and data preprocessing
Considering the influence of factors, such as the dark cur-
rent of the charge-coupled device camera, there is a need 
for correcting the collected hyperspectral data image 
[16]. The image captured when the camera lens is com-
pletely covered by the lens cover is the dark background 
value. The image captured when the hyper-spectrometer 
camera is aimed at a standard whiteboard is the standard 
whiteboard data. The correction formula is as follows:

where, Ai represents the corrected spectral absorbance 
data, B is the dark background data with a theoretical 
0% reflectance, W is the standard white board data with 
a theoretical 99% reflectance, and S is the sample raw 
hyperspectral data.

ENVI 5.1 (ITT Visual Information Solutions, Boul-
der, UT, USA) was used to collect data from the region 
of interest of different mesomorphs and calculate the 
number of hyperspectral samples (60) × number of wave-
lengths (256) of the spectral data matrix for the average 
absorbance. The unprocessed raw spectral data include a 
large number of redundant signals and data with useful 
information; hence, it is difficult to conduct accurate data 
mining [17]. The spectral data should be preprocessed to 
eliminate the influence of spectral scattering, sample size, 
environmental influence, noise interference, and other 
factors, as well as to enhance the spectral characteris-
tics [18]. The standard normal transformation is a rela-
tively simple preprocessing method, which is often used 
in spectral preprocessing. Hence, we decided to use the 
standard normal transformation for spectral preprocess-
ing as shown in Eqs. 2 and 3:

(1)Ai = − lg

(

S − B

W − B

)

(2)xsnv,i =
xi − x

√

∑m
i=1 (xi−x)2

m−1

Uniform light source

Sample

Electric mobile plantform

Hyperspectral imager

Fig. 1 Gaia Sorter hyperspectrometer
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where, m represents the number of wavelengths.

Determination of the characteristic wavelength
Hyperspectral data contain a large amount of redun-
dant information and information concerning collin-
earity. Characteristic wavelength screening should be 
performed before quantitative analysis to eliminate the 
influence of redundant information and improve the 
accuracy and stability of modeling [19]. SPSS v26 (IBM, 
Chicago, IL, USA) software was used to perform stepwise 
regression to screen characteristic wavelengths. This is 
one of the best predictive methods in multiple regres-
sion because it tests all independent variables and elimi-
nates insignificant and meaningless variables by selecting 
valid independent variables that have a greater impact on 
the dependent variable in the equation. The use of this 
method ensures that the regression equation reasonably 
reflects the relationship between the independent varia-
ble and the dependent variable, making it suitable for use 
in this study [20].

Simulation acquisition method of different bandwidth data
Besides specifying the characteristic wavelength, deter-
mining the wavelength bandwidth is another key param-
eter for measuring nitrogen. If the spectrum used for 
modeling is too wide, it can lead to interference due to 
other factors when analyzing changes in absorbance. This 
in turn will reduce the prediction accuracy of the model 
[21]. On the contrary, it is easier to exclude a selected 
bandwidth. The narrower the modeled spectral range, the 
greater the accuracy of the model [22]. The bandwidth 
parameters of the existing filters on the market gener-
ally range from 10 to 300 nm. This experiment provides 
a basis for filter selection, as it compares the modeling 
effect under bandwidths of 10–300  nm through Matlab 
2020a (The Math Works, Natick, MA, USA) simulation 
to determine the appropriate bandwidth range (Fig. 2).

The specific method is as follows:
The center wavelength and bandwidth parameters of 

each group were substituted into the approximate dis-
tribution function of light transmission of the filter to 
obtain the light transmission distribution curve corre-
sponding to each group of wavelengths and bandwidths. 
Next, the convolution operation was performed on the 
hyperspectral data and distribution curve at the corre-
sponding wavelength. The simulated data were obtained 
in line with the actual light transmission characteristics of 
the filter of each group of center wavelengths and band-
widths. Equations 4 and 5 demonstrate the approximate 

(3)x =
∑m

i=1 xi

m

distribution function of light transmission of the band-
pass filter [23]:

where, Tp represents the peak transmittance of the filter, 
ideally Tp = 1; λc represents the center wavelength of the 
peak transmittance; and σ represents the variance of the 
waveform and has a linear relationship with the band-
width (full width at half maximum, FWHM). The convo-
lution calculation was performed as follows:

where, Si represents simulation data and Ai represents 
the hyperspectral data (absorbance or reflectance value) 
at the corresponding wavelength.

Simulation method of obtaining the center wavelength shift 
data
The band-pass filter installed in this study is a thin-film 
interference filter. An increase in the temperature of the 
filter causes a change in the refractive index of the film. 
The substrate and the film have different coefficients of 
thermal expansion; hence, when heated, the film is elas-
tically deformed under the action of substrate stress, 
resulting in a change in the concentration density and a 
shift in the center wavelength [24]. If the center wave-
length shift due to thermal expansion is too large, the 
prediction performance of the model will be greatly 
reduced. In general, the center wavelength shift caused 
by the temperature effect is less than  10–3 nm °C [25]. To 
determine if the model built after installing the filter was 

(4)T (�) = Tp exp

(

− (� − �c)
2

2σ 2

)

(5)σ= FWHM
/√

2 ln 2

(6)Si=
1

∑

T (�)=0
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Fig. 2 Filter transmission curve. The light transmittance curve when 
the center wavelength is 1500 nm, and the bandwidths are 10, 25, 
and 50 cm
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affected by the ambient temperature, in this study, we 
used a model with a fixed center wavelength and band-
width. The model predicted and analyzed the error situa-
tion of different offset data, and determined the ambient 
operating temperature range of the hyperspectral imag-
ing detection device. The specific method was as follows:

Linear interpolation calculations were performed using 
the "spline" function in MATLAB 2020a based on the 
hyperspectral data with a high wavelength resolution of 
fresh corn leaves to obtain higher wavelength resolution 
data. The interpolation method is shown in Eq. 7.

The light transmittance distribution curve was obtained 
under the corresponding wavelength and bandwidth by 
substituting the wavelength shift from the center wave-
length into the approximate distribution function of the 
light transmission of the filter.

The hyperspectral data and light distribution curve 
were convolved at the corresponding wavelength to 
obtain simulation data that conformed to the actual off-
set characteristics of the filter. For the convolution calcu-
lation, please see Eq. 6.

For (xi, xi+1), any wavelength in the range x, the absorb-
ance y can be calculated with Eq.  7. Among the vari-
ables, xi and yi represent the wavelength and absorbance, 
respectively, and xi+1 and yi+1 are the wavelength and 
absorbance, respectively, corresponding to the latter 
wavelength.

Evaluation indicators of the model
In this study, the accuracy of the model was evaluated 
using the determination coefficient  (R2) and root mean 
squared error (RMSE) [26].  R2 is an indicator of the 
degree of fit of the model, and it ranges from 0 to 1 [27]. 
RMSE is a quantitative trade-off method and a common 
evaluation index, which can range from zero to infinity. 
The lower the RMSE value, the better the result [28]. The 
equations for  R2 and RMSE are as follows:

where, SST represents the total sum of squares, SSR rep-
resents the regression sum of squares, and SSE represents 
the residual error sum of squares.

where, m represents the number of samples; yi represents 
true value.

(7)y = yi +
x − xi

xi+1 − xi
(yi+1 − yi)

(8)R2 = SSR

SST
= 1− SSE

SST

(9)RMSE =
√

1

m

∑m

i=1
(yi − ŷi)2

Results
Selection of filter center wavelength
The model was simulated using the near-infrared hyper-
spectral data of 60 groups of fresh corn leaves in differ-
ent growth stages. The stepwise regression method was 
combined with the existing filter models to process the 
hyperspectral data of the leaves. A filter with a charac-
teristic wavelength of 1500 nm was selected. An increase 
in the full spectrum can reduce system error and elimi-
nate background noise; therefore, in this study, we used 
a combination of 1500 nm and the full spectrum to con-
duct stepwise regression for modeling analysis.

In contrast to other experiments involving leaf water 
measurements, in this study, 60 randomly collected 
samples in different growth stages were divided into the 
modeling set and prediction set at a ratio of 3:1. The  R2 
and RMSE of the two models are detailed in Table 1; the 
results revealed that the water and the nitrogen mod-
eling set and prediction set reached reasonable levels. 
According to the absorption characteristics of the near-
infrared group, the frequency doubling absorption of 
the CH group is mainly contained around 1150 nm. Fur-
thermore, the frequency doubling and the combined fre-
quency absorption of the OH and CH groups are mainly 
contained around 1400  nm. When the characteristic 
wavelengths of the OH and CH groups are selected to 
establish a regression model, the absorption information 
of the CH groups negate each other. This indicates the 
rationale for selecting the two characteristic wavelengths 
for water measurements. However, a wavelength of 
1500 nm only contains the NH2 group; hence, there is no 
need to consider interference due to other groups. At the 
same time, the double frequency absorption and com-
bined frequency absorption of the N–H bond stretching 
vibration are around 1500 nm, which is also the absorp-
tion wavelength of the NH2 group. Therefore, it was 
reasonable to individually select the characteristic wave-
length of 1500 nm as a characteristic of leaf nitrogen.

Selection of filter center wavelength bandwidth
The parameters were substituted under the character-
istic wavelength and different bandwidths into Eq.  4 
(approximate light transmission distribution function) 
and the light transmittance distribution curve under the 

Table 1 Results of modeling and prediction based on feature 
wavelengths

Model Wavelength (nm) Calibration set Prediction set

R2 RMSE R2 RMSE

Nitrogen 1500 0.751 0.223 0.759 0.206

Water 1150, 1400 0.965 1.301 0.954 1.394
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corresponding wavelength and bandwidth was obtained. 
Using Eq. 6, the hyperspectral data at the corresponding 
wavelength and the distribution curve were convolved, 
and the simulation data that accorded with the actual 
light transmission characteristics of the filter under dif-
ferent center wavelengths and bandwidths were obtained. 
The simulation data were applied under different param-
eters to establish a multivariate linear regression model. 
The following is a comparison of the modeling results of 
water and nitrogen under different bandwidths.

When the bandwidth was less than 50 nm, a significant 
change in  R2 and RMSE of the model was not observed 
(Table 2). When the bandwidth was greater than 50 nm, 
the  R2 and RMSE of the model were significantly reduced. 
When the bandwidth was less than 50 nm, the RMSE of 
the built model predicted that water content and nitro-
gen content were within the allowable error range, which 
can be used for general agricultural analysis. We finally 
selected 1500  nm as the characteristic wavelength, and 
building a nitrogen content model with a bandwidth of 
25 nm, can accurately detect nitrogen in corn leaves.

Influence of the center wavelength shift on model 
prediction performance
We applied the interpolation formula 7 to obtain the 
wavelength data with a wavelength resolution, and 
included the shifted center wavelength and bandwidth 
(25  nm) in Eq.  4. The offset was set to obtain the light 
transmittance distribution curve after the center wave-
length was shifted. Furthermore, the hyperspectral inter-
polation data of the corresponding wavelength were 
applied to Eq. 6 for convolution operation, and the simu-
lation data conforming to the actual offset characteristic 
of the filter were obtained. We detailed the application of 
the model using a center wavelength (λc) of 1500 nm and 
a bandwidth of 25 nm; the results of prediction detailing 
at different offset data are shown (Table 3).

As shown in Table 3, the prediction error of the model 
increases with an increase in the center wavelength shift. 
A larger shift in the center wavelength led to a significant 
drop in the reliability of the model; however, the center 
wavelength shift of the filter was not greatly affected 
by temperature. Generally, the outdoor environment 

temperature varies within 50 °C, which is equivalent to a 
center wavelength shift within 0.05 nm, that is, the model 
prediction error was negligible.

Construction of a near infrared detection device
We applied theoretical and simulation analyses to obtain 
key parameters such as the location and number of char-
acteristic wavelengths, bandwidth, and offset limits of the 
characteristic wavelengths required for leaf water meas-
urement. Based on the data obtained using the Xanic 
XEVA-2.35 near-infrared camera, a near infrared detec-
tion device was built that was suitable for in-situ detec-
tion of live leaves in the field (Fig. 3).

According to the actual size of the filter, a filter wheel 
was designed to install four filters of diameter 50  mm 
(Fig. 4). When it was necessary to use a filter, which cor-
responds to a certain wavelength, the rotating shaft of 
the servo motor caused the slot in the middle of the filter 
wheel to rotate to the desired position. The design of the 
filter wheel helps avoid inaccurate measurements caused 
by the contamination of the filter lens due to improper 
manual operation. At the same time, to prevent light 
leakage caused by a poor fit between the filter wheel and 
camera lens, we designed a corresponding mechanical 
system to solve the Newton ring phenomenon that must 
be faced in real-time inspection in the field.

Predicting fresh corn leaf water content using 
the near‑infrared detection imaging device
The determination coefficient of leaf water content pre-
dicted using the near-infrared imaging device reached 
0.930, and the root mean square error reached 1.030%, 
which is consistent with the results obtained by hyper-
spectral simulation, indicating that the near-infrared 

Table 2 Modeling results for different bandwidths

Model Water Nitrogen

R2 RMSE R2 RMSE

10 0.961 1.343 0.751 0.262

25 0.966 1.253 0.750 0.263

50 0.964 1.548 0.690 0.292

100 0.961 1.335 0.391 0.410

Table 3 Effects of central wavelength drift on model prediction 
errors

Drift (nm) RMSE

Nitrogen (g) Water (%)

0.000 0.263 1.253

0.010 0.263 1.255

0.030 0.263 1.267

0.050 0.263 1.292

0.070 0.264 1.327

0.090 0.265 1.374

0.100 0.265 1.400

0.200 0.273 1.769

0.300 0.285 2.254

0.400 0.302 2.790

0.500 0.321 3.368
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imaging device has a good effect on quantifying corn leaf 
water (Table 4).

This study provides support for a new method of in-
situ detection using hyperspectral image technology to 
visually analyze the internal chemical components of live 
corn leaves.

The main leaf veins of the living leaf in the figure 
were not destroyed and imaging results in the case of 
transpiration tension transported water indicated that 
the main leaf veins had a higher water content (Fig. 5). 

From the visual imaging of the leaf structure, it was 
observed that the leaf loses water from the edge, which 
gradually spreads to the middle of the leaf. The water 
content in the leaf petiole was significantly higher than 
that in the mesophyll tissue. The imaging results were 
consistent with the actual situation. Furthermore, the 
difference in the gradient value of water content in dif-
ferent areas of the leaf veins and mesophyll was signifi-
cantly greater than the actual detection accuracy value 
(compared with the drying method, the average error 
was approximately 1.5%). Accurate and reliable water 
imaging detection results and their analysis can indi-
cate that the application of average water content of 
leaf veins and mesophyll tissue and their differences, 
and their dynamic difference values, are suitable for 
characterizing the physiological indicators of drought 
resistance identification.

The average values of water content were measured 
at different reproductive stages, revealing a higher level 
in veins than that in the mesophyll tissue. Further, as 
the leaves grew, there was an increase in accumu-
lated organic matter; hence, a lower water content was 
observed with regards to leaf proportion, which indi-
cates a trend of decreasing water content (Fig. 6).

The water content in maize leaves predicted by the 
near infrared detection device was consistent with the 
physiological biochemistry of the crop, further indicat-
ing that the model constructed from the spectral data 
can predict leaf water content. In the subsequent stud-
ies, we will establish and validate the models of the 
relationships between WV, WM, DVM; their dynamic 
changes; leaf water potential; relative water content; 
and transpiration rate characterization to achieve the 
in-situ detection of physiological indicators of drought 
resistance in vivo in crop leaves. Furthermore, a signifi-
cant amount of data concerning WV, WM, DVM, ∆WV, 
∆WM, ∆DVM, and biomass index of maize under dif-
ferent drought stress intensities, different fertility peri-
ods, and different diurnal periods were directly applied 
to conduct a comprehensive index study to characterize 
the drought resistance of the crop.

Fig. 3 Near‑infrared imaging device. The near‑infrared imaging 
device built by filter splitting, with a high‑sensitivity near‑infrared 
camera, filter wheel, and servo motor, in which the near‑infrared 
camera, servo motor, and filter wheel are placed inside the packaging 
box. The through holes of the camera, the packaging box, and the 
through holes in the runner are located on the same straight line

1500 nm

Full spectrum1400 nm

1150 nm

Fig. 4 Filter holder. According to the actual size of the filter, the filter 
wheel is designed to install four filter wheels of diameter 50 mm, and 
the filter is embedded in a 52‑mm plastic ring to fix it

Table 4 Results of modeling based on different filters

Wavelength (nm) R2 RMSE

Full spectrum 0.437 2.940

1150 0.362 3.120

1400 0.597 2.480

1400, Full spectrum 0.922 1.090

1150, 1400, Full spectrum 0.930 1.030
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Predicting fresh corn leaf nitrogen content using 
the near‑infrared detection imaging device
The nitrogen content in the leaves was obtained by 
simulation using hyperspectral data, the coefficient of 
determination reached 0.750, and the root mean square 
error reached 0.263 g (Table 3).

Hyperspectral data and models were applied to pre-
dict the results of imaging the nitrogen content of 
maize leaves (Fig. 7). The nitrogen content of the main 
leaf vein is significantly lower, and the nitrogen con-
tent of the mesophyll area close to the main leaf vein 
is significantly higher. The distribution characteristics 
and patterns of leaf nitrogen content obtained by imag-
ing are consistent with the actual distribution of maize 
leaves. The results indicate that non-destructive and 

real-time imaging detection of the nutritional status 
of maize can be performed using spectral character-
istics, which can provide a novel and effective techni-
cal means to study the storage and transportation of 
nitrogen in live crops. The simulated "low-resolution, 
high flux" spectrum can meet the requirements for the 
detection and imaging of the average nitrogen content 
as well as the nitrogen content in different regions of 
the leaf.

Discussion
Effective and rapid identification of crop drought resist-
ance is important to improve the breeding efficiency of 
crop tolerance under abiotic stress such as drought. Fur-
thermore, it will aid in understanding the mechanism of 
drought resistance in crops. Current research shows that 
leaf water potential, relative water content, transpira-
tion rate, and stomatal conductivity are closely related to 
drought resistance [29]. Among these, there is a lack of 
rapid in vivo detection methods for leaf water potential 
and relative water content that can be conducted in-situ. 
The application of near-infrared hyperspectral imaging 
could distinguish large differences in the water content 
in leaf veins and fleshy regions of fresh maize leaves [30]. 
Through the combination of leaf water potential, rela-
tive water content, and transpiration rate and analysis, it 
is feasible to use the average water content of leaf veins 
and mesophyll tissue and their differences (WV, WM, 
and DVM), and their dynamic difference values (∆WV, 
∆WM, and ∆DVM), to characterize leaf water potential, 
relative water content, and transpiration rate, respec-
tively. Three of the four important physiological indica-
tors of drought resistance identification can be achieved. 
Furthermore, by measuring stomatal conductance, 
which is closely related to the transpiration rate, all four 
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Fig. 5 Near‑infrared imaging device predicts the results of in‑situ imaging detection of water content in live maize leaves. Predicted distribution of 
corn leaf water content obtained using the near‑infrared imaging device. The image on the left is water content distribution in the extraction area 
of the leaves, and the color bar on the right is water content distribution. The colors and shades of different positions on the leaves indicate the 
corresponding water content values at that position. According to the distribution map, the predicted value of the water content of each pixel can 
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Fig. 6 Maize leaf water in different growth stages. The red dots 
represent the average values of different growth stages. After 
shooting the leaves, the mesophyll and vein tissue were separated, 
and the water content was measured using the drying method
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important physiological indexes for drought resistance 
can be determined. Due to the difficulties in using large-
volume and heavy-weight hyperspectral instruments 
for the in-situ detection of live crop leaves in the field, a 
smaller NIRDR-AI device was constructed for this study 
that was suitable for the in-situ detection of live leaves 
in the field, which was used to visually image the water 
inside leaves.

Currently, we are conducting experiments under field 
conditions. The working principle of the NIRDR-AI 
device is that the upper computer controls the motor to 
rotate the filter wheel to an appropriate angle and col-
lect information concerning the leaves. The quantitative 
analysis of the water and nitrogen content is completed 

by converting the collected near-infrared images at spe-
cific wavelengths into near-infrared spectra (Fig.  8). We 
used horizontal and vertical adjustment devices to adjust 
the near-infrared camera to an appropriate position and 
we added fill-light in accordance with factors such as 
weather, and placed a whiteboard on the blade for cali-
bration when recording.

This experiment was under taken with a near-infrared 
imaging device under fill light conditions indoors. Sub-
sequently, investigations on whether it is feasible to use 
sunlight in the field to shoot were carried out (Table 5). 
Pixel intensity of the photo reaches the maximum gray 
value of 16,384 under sunlight, which indicates it can 
achieve saturation, similar to in the fill light condition. In 
addition, it demonstrates that it is feasible to directly use 
sunlight in field experiments.

Some limitations associated with the experiments 
are as follows. The camera lens selected in this experi-
ment is a short-focus lens, which has a small focal length 
and a wide viewing angle. Therefore, it is more suitable 
for quantitative analysis of canopy leaf water. Telephoto 
lenses will be used in subsequent experiments, which 
would yield stronger scenes, increase pixel occupancy, 
and more accurate modeling results; furthermore, the 
results of visual analysis of leaf stalk and mesophyll tissue 
of a single leaf would be more detailed.

Fig. 7 Prediction of fresh maize leaf nitrogen content imaging assay results. The nitrogen content in the leaves was mapped using high‑precision 
model detection results, visual imaging analysis of corn leaf nitrogen, extracting the absorbance value of each pixel in each image at the 
characteristic wavelength of 1500 nm, and calculating the nitrogen content of each pixel of the corn leaf by the regression model

1. Diffuse reflection whiteboard
2. Maize plants
3. Imaging probe
4. Light supplement lamp
5. Horizontal adjustment platform
6. Vertical adjustment platform
7. Rotation head

Fig. 8 Working principle of near‑infrared imaging device. The 
near‑infrared imaging device can be used to image and analyze the 
leaves of a single corn plant, in which important parameters of the 
light path can be automatically adjusted

Table 5 Modeling results for different bandwidths

Model Maximum gray value under different filters (Adu)

1150 1400 1500 Full spectrum

Fill light 16,384 16,384 16,384 16,384

Sunshine 16,384 16,384 16,384 16,384
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Conclusions
In this study, we aimed to obtain key technical parameters 
of a multispectral imaging detection device suitable for 
real-time measurement of water and nitrogen content in 
live maize leaves in the field using hyperspectral data simu-
lation. We set up the device according to the selected key 
parameters. Using this device, basic testing was achieved 
and in-situ imaging detection of water content and nitro-
gen content in live corn leaves in a field environment was 
completed. The proposed indicators and methods, such as 
WV, WM, DVM, ∆WV, ∆WM, and ∆DVM, could facilitate 
the elucidation of drought resistance mechanisms in crops. 
The near infrared detection device built in this study has 
wider research and application potential, such as in-situ 
imaging of in vivo leaf chlorophyll and cellulose chemistry 
in a field environment. The device introduced in this article 
could not only provide a novel approach for the identifica-
tion of drought resistance in crops but could also be used 
for crop nutrient status assessment, with a wide range of 
potential applications.

Abbreviations
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