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Abstract 

Background: Due to the high cost of data collection for magnetization detection of media, the sample size is limited, 
it is not suitable to use deep learning method to predict its change trend. The prediction of physical and chemical 
properties of magnetized water and fertilizer (PCPMWF) by meta-learning can help to explore the effects of magnet-
ized water and fertilizer irrigation on crops.

Method: In this article, we propose a meta-learning optimization model based on the meta-learner LSTM in the field 
of regression prediction of PCPMWF. In meta-learning, LSTM is used to replace MAML’s gradient descent optimizer for 
regression tasks, enables the meta-learner to learn the update rules of the LSTM, and apply it to update the param-
eters of the model. The proposed method is compared with the experimental results of MAML and LSTM to verify the 
feasibility and correctness.

Results: The average absolute percentage error of the meta-learning optimization model of meta-learner LSTM is 
reduced by 0.37% compared with the MAML model, and by 4.16% compared with the LSTM model. The loss value of 
the meta-learning optimization model in the iterative process drops the fastest and steadily compared to the MAML 
model and the LSTM model. In cross-domain experiments, the average accuracy of the meta-learning optimized 
model can still reach 0.833.

Conclusions: In the case of few sample, the proposed model is superior to the traditional LSTM model and the basic 
MAML model. And in the training of cross-domain datasets, this model performs best.
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Background
In modern agriculture, magnetic treatment of water 
and fertilizer irrigation has been the underlying physical 
technology to increase crop yields [1]. Some studies have 
confirmed that irrigation with magnetized water and fer-
tilizer can enhance the ability of some crops to absorb 
nutrients [1, 2], and also improve some specific goals [3–
5]. In fact, the essence of magnetized water and fertilizer 

is that under the action of a magnetic field, its physical 
and chemical properties, such as surface tension coeffi-
cient, viscosity, conductivity, PH value, will change [6–8], 
this has an impact on the growth of crops. This article 
hopes to predict the physical and chemical properties of 
magnetized water and fertilizer (PCPMWF), further help 
to explore its impact on crop irrigation.

At present, with the development of smart agriculture, 
the application of deep learning in agriculture has been 
extensively studied [9, 10]. For example, two deep learn-
ing architectures are used to identify and predict pests 
and diseases based on features such as texture and color 
[11, 12], and methods such as DBN and CNN are used 
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to distinguish different crops and weeds by identifying 
leaves, so as to optimize the implementation of herbi-
cides [13–16]. Not only that, with the development of 
deep learning structures such as recurrent neural net-
works (RNN) and long short-term memory networks 
(LSTM), the forecasting and early warning of time series 
data has also developed rapidly [17, 18]. It has application 
potential in the field of intelligent management of agri-
cultural production.

Although deep learning has achieved advanced results 
and often has high accuracy, at the same time, the suc-
cess of deep neural network models depend chiefly on a 
large number of samples and multiple iterations of train-
ing parameters [19–21], leading to this is not applicable 
in some research fields. Especially, collecting large-scale 
data will bring a serious burden, because the collection of 
data often requires a lot of workforce and time cost [22], 
and when the number of samples with supervised infor-
mation is too small, the training of deep learning models 
is prone to overfitting [19, 23]. The overfitting problem 
may cause the loss function to be very close to 0, and the 
model fits all the data in the training set as much as pos-
sible, but there is not enough data to restrict it to better 
generalize to new samples.

For this reason, one way is to use more complex net-
works and larger datasets [24, 25]. However, the commu-
nity, which is in the bottleneck of deep learning, has to 
stand on another new starting point to break through the 
difficulties. The solution of how to train a model with a 
small amount of data has attracted the attention of some 
scholars, and they have proposed a few-shot learning 
method. At this stage, few-shot learning methods are 
divided into three categories: data enhancement, metric 
learning, and meta-learning [23]. The successful applica-
tion of few-shot learning in other fields has caused it to 
gain more and more attention in the agricultural field, 
including plant segmentation, pests and diseases iden-
tification, remote sensing, crop status assessment, etc. 
Notably, Li et  al. used CNN feature extractor to train a 
few samples through triplet loss to distinguish differ-
ent pest species [26]. Furthermore, Li et  al. proposed 
a semi-supervised few-shot learning method for plant 
leaf disease identification, which verified its correctness 
and generalization [24]. Azam Karami et al. explored the 
application of few-shot learning in remote sensing tech-
nology for automatic plant counting and positioning 
[27]. Wang et  al. proposed a few-shot learning method 
based on the Siamese network to solve a leaf classifica-
tion problem with a small sample size [28]. The above 
related studies are all in the case of unable to obtain 
enough samples, learning through a few samples to solve 
practical problems, reducing the number of samples and 
cost. In essence, few-shot learning mines the high-level 

semantic representation of things, that is, extract and dis-
seminate prior knowledge from the task set, so that the 
trained model can be transferred, and the influence of 
the learned experience on the completion of new tasks is 
applied to a few samples.

Starting from the research direction of this article, we 
are more inclined to use few-shot learning methods. 
Mainly for the “large-scale datasets” problem, there are 
two difficulties in this research: First of all, because the 
research on PCPMWF in the agricultural field is not 
comprehensive, there is no data related to magnetized 
water and the physical and chemical parameters of water 
and fertilizers in the public datasets, which requires us to 
collect data through experiments. What’s more, the mag-
netization experiment and the measurement steps of the 
parameters are very cumbersome, the calculation pro-
cess is complicated, and the parameters of the water and 
fertilizer solution are in a flowing state during irrigation 
are difficult to determine, which makes data collection 
time-consuming and laborious. Altogether, collecting 
large-scale datasets is difficult and costly. The few-shot 
learning method is hopeful to bring important value and 
significance to this research, and it has broad develop-
ment potential in the agricultural field.

In this paper, we propose a meta-learning optimiza-
tion model using LSTM as the meta-learner to apply to 
the field of parameter prediction field of PCPMWF. This 
method replaces the traditional gradient descent learner 
of MAML with a long and short-term memory network 
in meta-learning to process regression tasks. We con-
ducted water and fertilizer magnetization experiments to 
collect samples, summarized and compared the pros and 
cons of LSTM, MAML, and optimization models. Not 
only did the meta-learning MAML and deep-learning 
LSTM comparative experiments on the datasets ensure 
the feasibility of few-shot learning, but also further 
improved the meta-learning method, and also verified 
the superiority of the optimization model based on the 
LSTM meta-learner through experimental comparisons. 
Finally, a better method is proposed for the prediction of 
the physical and chemical properties of magnetized water 
and fertilizers, which can provide some references for 
further research in this direction in the future.

The contributions of this work are three-fold:

(1) We collected samples of PCPMWF through experi-
ments for research in the field of agricultural irriga-
tion magnetized water and fertilizer.

(2) We propose a meta-learning optimization model 
using LSTM as the meta-learner to predict PCP-
MWF.

(3) We compare the proposed method with the experi-
mental results of MAML and LSTM to verify the 
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feasibility and correctness of the method in the field 
of parameter prediction of PCPMWF.

Materials
The goal task is to predict the changing trend of PCP-
MWF under the condition of irrigation as the intensity of 
the magnetic field increases. The magnetic field strength 
increases regularly from 0 to 450mT with an arithme-
tic difference of 50mT, then each physical and chemical 
property parameter is a series of sequence data indexed 
by the magnetic field strength.

As mentioned above, since the water and fertilizer solu-
tion is in a flowing state during irrigation, its physical and 
chemical properties are difficult to determine, and the 
parameters of the magnetized static water and fertilizer 
solution are relatively easy to collect. The datasets we col-
lect are divided into “dynamic” and “static” categories. 
The specific data are collected by the water and fertilizer 
in the flowing or static state of the magnetization device, 
including surface tension coefficient σ ( N/m ), viscosity 
η ( mPa · S ), conductivity EC(µS/cm)and PH value four 
physical and chemical properties parameters. To this end, 
we set up a magnetizer test bench. After the water and 
fertilizer solution is magnetized, the final required data 
is obtained through precision instrument measurement 
and complex calculations. The specific measurement 
methods of each parameter are as follows:

(1) Use the pull-off method to measure the surface 
tension coefficient. Using the liquid surface tension 
coefficient measuring instrument, the reading value 
of the digital voltmeter immediately before the ring 
liquid film is broken and the reading value of the 
digital voltmeter after the breaking are U1 and U2 , 
respectively. Suppose the inner and outer diameters 
of the hoisting ring are D1 and D2 , and the conver-
sion coefficient K  of the instrument measured by the 
stepwise difference method is brought into the for-
mula, expressed as Eq. (1):

(2) Use the falling ball method to measure the vis-
cosity. The measuring tool is a small ball and a cylin-
der containing a magnetized water and fertilizer liq-
uid. Set the density of the ball as ρ , the density of the 
magnetized water and fertilizer as ρ0 , the diameter 
of the ball as d , the inner diameter of the cylinder as 
D , and the depth of the liquid as H . In addition, the 
photoelectric gate is used to measure and calculate 
that the uniform drop speed of the ball in the liquid 

(1)σ =
U1 − U2

Kπ(D1 + D2)

is v , which is brought into the formula, expressed as 
Eq. (2):

(3) Measure conductivity with the water quality test 
pen.
(4) Measure the PH value with the water quality test 
pen.

The total number of dynamic magnetized water and 
fertilizer data collected in this study is 64, and the total 
number of static magnetized water and fertilizer data is 
424 (hereinafter referred to as “dynamic data” and “static 
data”). The data details are shown in Table 1.

The datasets are divided into the training set and the 
test set, and they are divided into support set and query 
set. The two datasets are disjoint. In the research of this 
article considering cross-domain factors, the support 
set is the static magnetized water and fertilizer dataset. 
The query set is a very small amount of dynamic magnet-
ized water and fertilizer dataset. Different from the clas-
sification task (N-way K-shot classification problem), in 
the regression task, each task is no longer a batch of the 
classification task, but all the data is sent to the network, 
and a forward calculation and reverse calculation are 
completed.

Methods
MAML algorithm
Few-shot regression is to learn generalization through 
very few or fewer training samples, and the robust 
regressor can maintain high accuracy and scalability to 
predict new data. As the most extensive meta-learning 
algorithm, MAML’s basic idea is to find an optimal initial 
parameter, which can quickly learn new regression tasks 
with fewer gradient steps than deep learning. In MAML 
training, starting from initializing the optimal weights, 
the gradient descent method is repeatedly used to find 
the optimal weights, that is, to minimize the loss to train 
the network, so as to achieve convergence.

In this work, the overall solution of MAML is shown 
in Fig. 1. The structure covers inner and outer loops. The 
inner loop is used for update, that is, calculate the loss 

(2)η =
(ρ − ρ0)gd

2

18v[(1+ 2.4
d
D )(1+ 3.3

d
2H )]

Table 1 The details of dynamic data and static data

Physical and chemical 
properties Parameters

σ η EC PH value

Dynamic Data/Piece 16 16 16 16

Static Data/Piece 106 106 106 106
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and update the gradient in each task, and find the opti-
mal parameter θ ′i  of each task. The outer loop is used for 
backpropagation, that is, in each new task, the randomly 
initialized model parameter θ ′i  is updated by calculating 
the gradient relative to θ obtained in the inner loop.

Specifically, firstly, the weight θ = θ0 needs to be initial-
ized, then gradient descent is used in each task to update 
θ ′i for this specific task, and then the original parameter θ ′i  
is updated relative to θ , which realizes the use of gradient 
descent to minimize the loss training regression. The net-
work gets the optimal weight. This reflects the obvious dif-
ference between meta-learning and deep learning. Deep 
learning is to update the same parameter θ according to dif-
ferent batches of tasks, and the result of training will get a 
global (or for each task) optimal solution, but this may not 
be the optimal solution for a certain task. Meta-learning is 
different, it does not update the parameter θ for each task, 
but updates the parameter θ through the θ ′i of each task. In 

this way, the possible performance of θ on each task is not 
the best, but it can be guaranteed that the parameter θ is 
the most "sensitive". In other words, it is very sensitive to 
new tasks, and small changes in parameters can make a big 
change in loss. Therefore, a small amount of data can be 
used to complete the training of new tasks [29].

According to the foregoing, the extracted data points 
are divided into support set and query set, the support 
set is used to find the optimal parameter θ ′i  in the inner 
loop, and the query set is used to find the optimal param-
eter θ in the outer loop.

For regression tasks, the method uses mean square 
error (MSE) as the loss function:

The pseudo-code of the few-sample regression problem 
is shown in Table 2.

(3)LTi(fθ ) =
∑

xj ,yj∼Ti

∥

∥fθ (xi)− yi
∥

∥

2

2

Fig. 1 MAML solution

Table 2 Algorithm for updating model parameters

Algorithm 1 Meta-Learning Regression Model

Input: MAML with parameters θ , Base-Learner with step size hyperparameter α , Meta-Learner with step size hyperparameter β
θ0← random initialization #Randomly initialize model parameters

while not done do
Dtrain , Dtest← random datasets
for all Ti do
xj , yj← random batch from support set
L ← LTi (fθ )#Get loss using Eq. (3)
g ← ∇θ LTi (fθ )#Evaluate gradient with respect to parameters θ
θ ′i ← θ − α∇θ LTi (fθ )#Update Meta-Learner parameters
end for
X  , Y ← random batch from quest set

Update θ ← θ − θ ′i ← β∇θ

∑

Ti∼P(T )

LTi

(

fθ ′i

)

       #Update Base-Learner parameters

end while
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Meta-learner LSTM
As known, LSTM, as a special RNN, solves the problem 
of gradient disappearance and gradient explosion of ordi-
nary RNN in the long sequence data training process. In 
this work, we propose to use LSTM as a meta-learner 
to optimize meta-learning to perform regression tasks, 
replace the traditional gradient descent method with a 
long and short-term memory network as a learner, and 
store these updated sequences in LSTM, called meta-
learner LSTM. Therefore, the role of LSTM in the opti-
mization model is particularly important.

There are only simple neurons in the cyclic neural net-
work, and LSTM blocks are used to replace neurons in 
LSTM to train long-term dependent information. The 
LSTM block is shown in Fig. 2.

First, the cell state Ct−1 of the previous layer is multi-
plied by the forgetting vector ft point by point (denoted 
as ⊙ ). If it is multiplied by a value close to 0, then in the 
new cell state, this information needs to be discarded. 
Then add this value to the output value it ⊙ C̃t of the 
input gate point by point, and update the new informa-
tion found by the neural network to the current cell state 
Ct . Finally, the updated cell state is obtained. So far, the 
cell state update equation is derived, expressed as Eq. (4): 

However, in meta-learner LSTM, the LSTM block is a 
neural network structure as a recurrent layer. Using the 
LSTM block alone cannot build a complete learner. It is 
necessary to build the LSTM network and the dense layer. 
Meta-learner LSTM uses a two-layer LSTM network. 
The main reason for stacking LSTM layers is to allow 
greater learner complexity. In the case of a simple feedfor-
ward network, stack LSTM layers to create a hierarchical 

(4)Ct = ft ⊙ Ct−1 + it ⊙ C̃t

feature representation of the input data. Used for learn-
ing tasks. Of course, double-edged knives can also lead 
to over-adaptation and poor performance. As far as this 
structure is concerned, it is sufficient to improve from a 
single-layer LSTM layer to a two-layer LSTM layer. At the 
same time, cooperate with the Dropout layer to avoid the 
over-fitting phenomenon due to the excessive number of 
hidden layer nodes [30]. Place the Dense layer and finally 
process the previously extracted features with nonlinear 
changes, and sort out the weights in the LSTM network 
[31]. The model structure is shown in Fig. 3

Meta-learning optimization model
It can be seen from the above that the essence of MAML 
is to use gradient descent to learn the optimal initial 
parameter values. This paper proposes an optimization 
model that hopes that the meta-learner optimizes itself 
through gradient descent. After clever replacement, 
it becomes the use of LSTM’s state update formula to 
update the model parameters. Therefore, the purpose of 
Meta-Learner is to learn the update rules of LSTM and 
apply them to the parameters of the update model, so as 
to better “learning to learn”.

Fig. 2 Internal structure of LSTM block

Fig. 3 Meta-learner LSTM model structure
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Overall framework
If we call meta-learner LSTM an optimizer, then Base-
learner is called an optimization object. The overall 
framework of the meta-learning optimization model is 
shown in Fig. 4, which shows that the cyclical framework 
of the optimization model consists of four parts.

In step 1, use LSTM to find the optimal parameters and 
send them to the model to update the model parameters.

In step 2, the model then uses the new parameters of 
step 1 to calculate the loss.

In step 3, when the step 2 achieves the goal optimiza-
tion, the loss is backpropagated to the LSTM.

In step 4, calculate the gradient based on the loss of 
step 3 to optimize the LSTM itself, and further update 
the model parameters.

We can see that although the optimization model 
uses LSTM instead of the gradient descent method 
to find the optimal parameters, the gradient descent 
method needs to be used to optimize the LSTM, so the 
gradient descent method is still an indispensable part. 
In other words, the optimization model learning uses 
meta-learner LSTM to perform gradient descent, and 
meta-learner LSTM is optimized by gradient descent. 
From this point of view, the gradient descent method 
can be regarded as an update sequence from the output 
layer to the input layer. The LSTM cell update equation 
(expressed as Eq. (4)) corresponds to the update equa-
tion of the gradient descent, expressed as Eq. (5).

When ft = 1,

Analyze the specific role of the LSTM block in the 
meta-learning optimization scenario with reference to 

(5)θt = θt−1 − αt∇θt−1
Lt

(6)Ct−1 = θt−1

(7)it = αt

(8)C̃t = ∇θt−1
Lt

Fig.  2. The role of forget gate ( ft ) in the optimization 
model is particularly important. When the loss is large 
and the gradient is close to zero, the cell state is selec-
tively forgotten, and it is decided to discard the param-
eter value θt−1 and loss Lt that cause a large loss from 
the cell state, and its gradient Lt , thereby shrinking the 
model parameters. Input gate ( it ) determines the rest 
of the new information to enter the cell state, so it can 
determine the value of the updated model. It is used to 
adjust the learning rate αt , which can prevent the net-
work model from diverging and quickly learn. The final 
output gate ( Ot ) selectively outputs updated informa-
tion θt based on the current cell state.

Comparison of model structures
Knowing the internal operating mechanism of meta-
learner LSTM, we further compare the meta-learning 
optimization model of meta-learner LSTM with the 
MAML model, as shown in Fig.  5, to understand how 
meta-learner LSTM performs optimization in the model 
structure.

With respect to the static model MAML gradient 
descent as meta-learner, meta-learning optimization 
model meta-learner LSTM ht hidden updated over time. 
It has its own parameters, so suitable parameters can be 
found to minimize the loss through gradient descent. It 
is worth noting that when training on the support set, 
its parameters will not change. Instead, its parameters 
will be updated with gradient descent relative to the loss 
on the query set. It takes the gradient of the loss func-
tion relative to θt as the input, this serves as an update 
to the meta-learner LSTM (optimizer) itself, it is trained 
and calculated to minimize the loss. Furthermore, the 
gradient descent of the loss function is sent to the opti-
mization object and added to θt to become θt+1 , that is 
updated when the model is in the next state (time t + 1).

Results
In this section, the meta-learning optimization model 
based on meta-learner LSTM is used to conduct com-
parative experiments with LSTM and MAML model 
predictions, and the experimental result data of Mean 
Absolute Error (MAE) and Mean Absolute Percentage 
Error (MAPE) are obtained, fitting of the true value, pre-
dicted value and iteration of the loss function. And in the 
cross-domain situation, the advantages and disadvan-
tages of the meta-learner LSTM meta-learning optimi-
zation model and the MAML model are compared. The 
experimental hardware and software environments are 
the NVIDIA GeForce RTX 2080 with 32  GB memory 
and the libraries of Python (version 3.7.11), Pytorch (ver-
sion 1.9.0), Numpy (version 1.21.2), and Pandas (version 
1.3.2).

Fig. 4 The overall framework of the meta-learning optimization 
model
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In order to ensure a large comparison, the model 
parameters and dataset will be adjusted to be consistent. 
The specific parameters are shown in Table 3.

It should be noted that the number of iterations is 
unified to 20. The learning rate of the optimization 
model is divided into two types: inner loop and outer 
loop, both of which are 0.005. For the MAML model, 
there is no LSTM part, so the remaining three param-
eter values are null, and for the optimization model, 
these three parameter values refer to its meta-learner 
LSTM parameters.

Results of model prediction
We have collected a total of 64 dynamic magnetized 
water and fertilizer data, and a total of 424 static mag-
netized water and fertilizer data. Considering that LSTM 
cannot be trained with cross-domain data, this group of 
experiments uniformly used single-domain “static data” 
to train three models, and selected 100 of the “surface 
tension coefficient” as the total dataset. The distribution 
of the dataset is shown in Table 4.

Since the LSTM model is different from the meta-
learning model, the dataset only needs to be divided into 

(a) MAML model 

(b) Meta-learning optimization model based on meta-learner LSTM
Fig. 5 Comparison of the structure of the two models. a MAML model, b Meta-learning optimization model based on meta-learner LSTM
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the training set and the test set according to 0.9:0.1, and 
the MAML model and optimization model is used as 
the meta-learning model. Specifically, after the dataset is 
divided into training set and test set according to 0.8:0.2, 
further random samples will be drawn from it to be used 
as support set and query set. Therefore, we set to select 
40 support sets and 10 query sets in the 80 training sets, 
and select 10 support sets and 5 query sets in the 20 test 
sets.

Under the above experimental conditions, use MAE 
and MAPE to describe the prediction results of the 
model expressed as Eq. (9) and Eq. (10). Among them, yi 
represents the true value, and ŷ1 represents the predicted 
value of the model. When the predicted value is com-
pletely consistent with the true value, MAE is equal to 0, 
that is, a perfect model; the greater the error, the greater 
the value. Similarly, a MAPE of 0% indicates a perfect 
model, and a MAPE greater than 100% indicates an infe-
rior model.

Based on the model parameters that have been set 
above and the dataset training model, the specific experi-
mental data obtained are shown in Table 5. We can see 
that in the case of very few samples, the final MAE and 
MAPE obtained by the LSTM model are 0.22% and 
4.69%, respectively, which are significantly higher than 
the experimental results of the meta-learning model. 

(9)MAE =
1

n

n
∑

i=1

∣

∣ŷ1 − yi
∣

∣

(10)MAPE =
100%

n

n
∑

i=1

∣

∣

∣

∣

ŷ1 − yi

yi

∣

∣

∣

∣

Although the prediction effect is similar, it can be con-
cluded that the MAE and MAPE of the optimization 
model are slightly lower than that of the MAML model. 
Its prediction effect is the best among the three models.

The model predicts the last 4 sets of data from the first 
6 sets of data, that is, through training the physical and 
chemical property parameters when the magnetization 
is 0-250mT to predict the properties of the physical and 
chemical parameters when the magnetization is 300-
450mT. The fitting effect of the true value and the pre-
dicted value is intuitively reflected in Fig. 6. The test set 
randomly selects 10 sample data of the surface tension 
coefficient of the seventh group (that is, in the case of 
300 mT magnetization) in the dataset. The red line rep-
resents the actual value of the surface tension coefficient, 
and the blue line represents the predicted value of the 
surface tension coefficient. It can be seen from the real 
value that the surface tension coefficient is quite random 
and is an unstable sequence. Hence the fitting effect of 
the LSTM model is not very good, while the fitting curve 
of the optimization model is relatively more suitable.

Results of the iterative loss function
Loss function is used to estimate the degree of inconsist-
ency between the predicted value of the network model 

Tab 3 Model-specific parameters and explanation

Model parameters Explanation LSTM Model MAML Model Optimization 
Model

num_epochs Number of iterations 20 20 20

update_lr Learning rate 0.005 0.005 0.005

dropout Random inactivation rate 0.5 null 0.5

hidden_size LSTM hidden layer size 256 null 256

num_layers Number of LSTM layers 2 null 2

Table 4 Specific distribution of dataset

Models Total dataset Training set Test set

LSTM Model 100 90 10

MAML Model and Optimization 
Model

100 Support set Quest set Support set Quest set

40 10 10 5

Table 5 Comparison of MAE and MAPE of prediction results

Models MAE MAPE

LSTM Model 0.22% 4.69%

MAML Model 0.05% 0.90%

Optimization Model 0.02% 0.53%
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(a) LSTM model

(b) MAML model

(c) Meta-learning optimization model based on meta-learner LSTM
Fig. 6 Fitting curve of true value and predicted value. (LSTM model, b MAML model, c Meta-learning optimization model based on meta-learner 
LSTM
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and the true value. With continuous iteration, the smaller 
the loss function, the better the robustness of the model. 
This experiment uses the common mean square error 
loss in regression problems, and the loss function curves 
of the three models are shown in Fig. 7.

It can be seen from the figure that the losses of the 
three models in the initial iterations are quite different. 
In particular, the loss value of the LSTM model can reach 
0.007 and above. Compared with the loss value of the two 
models of the meta-learning algorithm. The accuracy is 
up to one decimal place. Knowing that the epoch is set 
to 20, their loss values have stabilized at around 10 itera-
tions. Only the LSTM model fluctuates slightly after 10 
iterations, and shows a trend of “oscillation attenuation” 
before stabilizing. In contrast, the loss function of the 
optimization model is the smoothest, and the decline is 
the fastest, reflecting its robustness. The decrease of the 
loss value of the MAML model slowed down between 1 
and 2 iterations, which highlights the optimization effect 
of the optimization model.

Results of cross-domain datasets experiment
The previous article only uses “static data” to verify the 
MAE, MAPE and loss functions of the three models, 
which belong to a “single-domain” experiment. Now 
consider a more complex data set and compare it with 
the “cross-domain” experiment. The cross-domain in 
this experiment refers to the training and prediction of 
“dynamic data” from “static data”, that is, static data as a 
support set and dynamic data as a query set. The aver-
age accuracy results of the model in the single domain 
and cross domain are shown in Fig. 8. In the figure, the 
ordinate is the average accuracy A , and the abscissa is the 
support set capacity Ns during model training, taking 1, 
5, and 10 respectively, and the query set capacity Nq dur-
ing training is a fixed value of 5.

Comparing the two figures, the average accuracy of the 
optimized model is always higher than that of the MAML 
model regardless of single-domain or cross-domain 
experiments. By calculating the average of the differ-
ence between the average accuracy of the two models at 
Ns= 1, 5, 10 , the average accuracy of the optimized model 
can be higher than 0.063 in the case of a single domain, 
and 0.034 in the case of cross-domain. At the same time, 
it can be seen that because the cross-domain data set is 
more complex, the average accuracy of the two models 
is higher in the single-domain case. Moreover, there is a 
downward trend when Ns = 5 in the cross-domain case. 
Considering that the support set and the query set no 
longer originate from the data set of the same domain 
in the cross-domain case, it is related to the respective 
capacity of the support set and the query set.

Discussion
For this study, we explored the improvement of the train-
ing effect of the few-sample regression by optimizing 
meta-learning, hoping to provide two references for the 
community. One of them is the difficulty of sample col-
lection and high cost in the field of agricultural irriga-
tion magnetized water and fertilizer. We are committed 
to solving the limitations of a few samples for prediction, 
and we have made efforts to optimize the performance 
of the model. Another point is that the field of few-shot 
learning in agriculture is not perfect at this stage, and the 
classification task of sample recognition is mainly, such 
as the classification of plant leaf diseases. The application 
of the meta-learning optimization model in the regres-
sion task is the follow-up few-shot regression training. 
Research has a certain paving effect.

We propose a meta-learner LSTM optimized meta-
learning optimization model to be applied to the regres-
sion prediction of a few samples of PCPMWF. The 
experimental results compared the LSTM model, MAML 
model, and Meta-learner LSTM meta-learning optimiza-
tion model from three aspects: the evaluation criteria of 
MAE and MAPE, the fitting effect of the true value and 
the predicted value, and the iterative trend of the loss 
function. It turns out that no matter from which aspect, 
the meta-learner LSTM optimization model performs 
relatively well. Specifically, in the case of few samples, 
for the MAE evaluation criteria, the meta-learner LSTM 
optimization model decreased by 0.03% compared with 
the MAML model, and decreased by 0.2% compared with 
the LSTM model. For the MAPE evaluation criteria, the 
meta-learner LSTM optimization model decreased by 
0.37% compared to the MAML model, and decreased by 
4.16% compared to the LSTM model. In terms of the fit-
ting effect of the true value and the predicted value, it is 
obvious that the prediction value fit of the meta-learner 
LSTM optimization model is better than the other two 
models. The loss value of the meta-learner LSTM optimi-
zation model changes significantly after 5 iterations, and 
there is no obvious trend change when the number of 
iterations exceeds 10. Compared with the MAML model 
and the LSTM model, the loss value declines the fastest 
and steadily, and has good robustness.

Through cross-domain experiments, it is found that 
although the average accuracy of the model is relatively 
lower than that obtained from the single-domain data 
set, the average accuracy of the optimized model pro-
posed in this paper can still reach 0.833, and it is always 
higher than the MAML model. At the same time, it was 
found in experiments that the average accuracy of the 
model in the cross-domain case did not increase with the 
increase in the number of sample points in the support 
set. The reason may be related to the capacity allocation 
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(a) LSTM model 

 

(b) MAML model 

 
(c) Meta-learning optimization model based on meta-learner LSTM 

Fig. 7 Loss function curve. a LSTM model, b MAML model, c Meta-learning optimization model based on meta-learner LSTM
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of the support set and the query set. In the future experi-
mental work, we can further explore its influence on the 
model.

At the same time, during the training process, we found 
that although the proposed model performed well in the 
prediction effect, the calculation speed decreased sig-
nificantly. Therefore, in the follow-up, we hope to further 
conduct multi-factor experimental analysis in terms of 
parameter adjustment and model structure deployment 
to improve the promotion performance and prediction 
efficiency of the few-shot regression prediction model.

The disadvantage of this article is that it uses a self-built 
datasets and does not fully analyze the subjectivity of 
experimental measurement. In the future, we will consider 
using data enhancement and other methods to conduct 
full verification and comparative analysis more objec-
tively, so as to explore the fact that there are fewer samples. 
Should we expand the number of samples to fit the model, 
or should we continue to improve the model to better train 
a small number of samples. At the same time, this article 
only selects two models for comparison in the machine 
learning algorithm, and will further consider adding analy-
sis and verification of related models in the future.

Conclusion
The application of predicting the properties of magnet-
ized water and fertilizer based on a few samples is of 
great significance to the field of regression of learning 
with a few samples. This article focuses on forecasting 
and analyzing the trend of magnetized irrigation water 
and fertilizer combined with the method of few-shot 
learning to provide a reference value for the agricul-
tural field and machine learning research. In this work, 
we proposed the meta-learning optimization model of 
meta-Learner LSTM. Meta-Learner LSTM and the gra-
dient descent method complement each other. After 
multiple updates, it can quickly improve the learning 
efficiency of the model, which is more accurate than tra-
ditional MAML. Its superiority is manifested in theory 
and experiment. We verify the correctness and robust-
ness of the proposed model through comparative experi-
ments. In the case of using the same dataset, the average 
absolute percentage error of the meta-learning optimi-
zation model of the proposed meta-Learner LSTM is 
reduced by 0.37% compared with the MAML model, and 
by 4.16% compared with the LSTM model. Moreover, 
the loss value of the meta-learning optimization model 
in the iterative process drops the fastest and steadily 
compared to the MAML model and the LSTM model. In 
cross-domain experiments, the average accuracy of the 
meta-learning optimized model can still reach 0.833, and 
it is always higher than the MAML model under any cir-
cumstances. Cross-domain exploration will also become 
a major direction of future research.
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