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Abstract 

Background As a result of the technological progress, the use of sensors for crop survey has substantially increased, 
generating valuable information for modelling agricultural data. Plant spectroscopy jointly with statistical modeling 
can potentially help to assess certain chemical components of interest present in plants, which may be laborious and 
expensive to obtain by direct measurements. In this research, the phosphorus content in wheat grain is modeled 
using reflectance information measured by a hyperspectral sensor at different wavelengths. A Bayesian procedure 
for selecting variables was used to identify the set of the most important spectral bands. Additionally, three differ‑
ent models were evaluated: the first model assumes that the observations are independent, the other two models 
assume that the observations are spatially correlated: one of the proposed models, assumes spatial dependence 
using a Conditionally Autoregressive Model (CAR), and the other through an exponential correlogram. The goodness 
of fit of the models was evaluated by means of the Deviance Information Criterion, and the predictive power is evalu‑
ated using cross validation.

Results We have found that CAR was the model that best fits and predicts the data. Additionally, the selection vari‑
able procedure in the CAR model reveals which wavelengths in the range of 500–690 nm are the most important. 
Comparing the vegetative indices with the CAR model, it was observed that the average correlation of the CAR model 
exceeded that of the vegetative indices by 23.26%, − 1.2% and 22.78% for the year 2010, 2011 and 2012 respectively; 
therefore, the use of the proposed methodology outperformed the vegetative indices in prediction.

Conclusions The proposal to predict the phosphorus content in wheat grain using Bayesian approach, reflect with 
the results as a good alternative.
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Background
Wheat, like all plants, requires nutrients and macro 
nutrients for its development. A balanced contribution 
of these, leads to good grain yield and a good quality 
product. Phosphorus is a nutrient which is as a source 
of energy necessary for all metabolic processes in the 
wheat plant to take place. Its deficiency makes it impos-
sible for the plant to complete these metabolic processes 
normally. The two critical moments in which its presence 
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is fundamental are: (1) in germination because it favors 
rapid root growth, and (2) in pre-flowering and growing 
because it provides the necessary energy for both grain 
synthesis and transport of photosynthesized sugars [1]. 
The phosphorus content in wheat grain, in addition to 
impacting the performance behavior, represents a prod-
uct with a high nutritional content [1]. The determina-
tion of phosphorus content by using traditional methods 
is expensive and time consuming, therefore new meth-
ods to estimate this content in more efficient ways are 
needed.

Different vegetative indices have been used to indirectly 
measure the phosphorus content in wheat grain, such as 
the Simple Ratio [4], Normalized difference vegetation 
index [4], Green normalized difference vegetation index 
[11], Soil adjusted vegetation index [12] and Optimized 
soil adjusted vegetation index [19], however, these indices 
have been developed for monitoring N in plants.

A vegetative index that monitors phosphorus in the 
wheat plant is P_1808_1460 [13], for which it is necessary 
to adjust the reflectance data to obtain values of the 
complete light spectrum including the shortwave infrared 
region (SWIR), we can’t compare our results with this 
vegetative index because there was no information on 
this light spectrum.

We can also find studies to estimate phosphorus using 
reflectance data in other crops, such as [17], where they 
used neural networks to ascertain the key wavelengths 
for phosphorus prediction in savanna grass; but noth-
ing specific for predict the phosphorus content in wheat 
grain, for that reason this research proposes a method to 
estimate it using hyperspectral reflectance.

We propose to evaluate three models: Model 1 assumes 
that the observations are independent, the other two 
models assume that the observations are spatially 
correlated, following either modeled by an exponential 
correlogram or using a Conditionally Autoregressive 
Model (CAR). In all models, to satisfy the assumptions of 
normality the dependent variable is the natural logarithm 
of the phosphorus concentration in the wheat grain; 
the independent variables are the wavelength bands 
measured in nanometers.

The organization of the article is as follows. In material 
and methods section, we describe a real dataset used for 
studied the predictive ability of 3 different models and to 
be able to compare the results with different vegetation 
indices. We describe the methodology and criteria for 
select variables, and how we did the cross-validation and 
predictions in each model. Next, we describe a simulation 
experiment to show that the proposed models work. 
Finally, we present the results and discussion. We include 
an appendix on the derivation of the full conditional 
distributions necessary to implement Gibbs sampler and 

Metropolis-Hastings algorithms and the supplementary 
material includes R codes that implement the proposed 
algorithms.

Materials and methods
Field experiment and data acquisition
An experiment was carried out at the International 
Maize and Wheat Improvement Center (CIMMYT), 
located in the Yaqui valley near to Obregon, Sonora, in 
the northwest from Mexico. The experiment aimed to 
investigate the effect of different levels of phosphorus 
(P) fertilization on P content in the wheat grain. No 
fertilization was performed with P in the experimental 
area during the previous four wheat cycles of the 
experiment to avoid residual effect. The climate in the 
Yaqui valley is semi-arid with variable precipitation 
rates averaging 280  mm per year and an average daily 
temperature of 24  °C. The soils in this region are clay 
coarse sandy, mixed with montmorillonite clay.

An experiment in split plots to evaluate the phosphorus 
in wheat grain was carried out in 3 cycles corresponding 
to the years 2010, 2011 and 2012. Two levels of 
phosphorus, 0  kg/ha and 80  kg/ ha, were considered 
in the main plots and 21 different wheat genotypes in 
subplots. 3 repetitions were performed. Each of the 126 
plots, was 4 beds of 0.8 m with two rows on the top by 
5 m long.

Hyperspectral reflectance was measured in each 
plot using a JAZ spectroradiometer Z31 with a CC-3 
cosine corrector attached to the optical fiber with a 
FOV (field of view) aperture of 25° (Ocean Optics, Dun-
edin, FL, EE.UU.). The sensor has a spectral range of 
339 to 1029 nm (nm) with a bandwidth of 0.38 nm, giv-
ing a total of 2048 bands. A dark reading was taken just 
before measurements to set a lower reflectance point of 
the device. A diffuse white reflectance target, Spectralon 
(Labsphere, North Sutton, NH, EE.UU.) was used from 
time to time for field measurements as reference for 
the upper reflectance point of the device. The data was 
downloaded and subsequently calibrated using Spec-
traSuite software (Ocean Optics, Dunedin, FL, EE.UU.). 
Measurements were taken at the center of each of the 
four beds, typically from 11:00 am. to 2:00 p.m., targeting 
at the canopy at a constant height. This procedure was 
done 2 weeks after anthesis.

At the start this experiment was carried out for pur-
poses of fertilization studies, but for our purpose only 
the data was retrieved because there were 21 wheat geno-
types in 2010 and 2011, in addition to another 21 in 2021, 
this would allow us to capture the variability not only 
between individuals but also the spatial one and be able 
to compare the results under 3 scenarios in the sense that 
it can be observed variability in each year (Fig. 1) and it is 
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due to this capability of capture the variability that pre-
dictions can improve or worsen.

Figure 1 shows the distribution of phosphorus content 
in wheat grain in the genotypes of the years 2010, 2011 
and 2012. In 2012, 21 different genotypes were included 
than in the previous years and it is generally observed 
that these genotypes have lower phosphorus content in 
the grain.

Pre‑processing of hyperspectral reflectance data
Information about 2048 spectral bands was available for 
use as independent variables in the models. Nevertheless, 
it is observed that there is up to 65% of data lost in both 
the first 296 bands and the last 592 bands, so we decided 
to narrow the range of light spectrum, considering only 
the range from 450 to 850 nm. Additionally, it is known 
from several studies that multicollinearity exists between 
the bands of the spectrum and in our case the informa-
tion was available with a narrowband of 0.38  nm band-
width, with which linear combination in parts could be 
generated to make a resampling using Bsplines [7] and 
stay with a bandwidth of 4  nm, resulting in 101 total 
wavelengths used for the data analysis.

Models
Consider the model:

where yi is the natural logarithm of phosphorus in wheat 
grain in case i = 1, . . . , n , xti = (xi1, . . . , xip) represents 

(1)yi = xtiβ + ǫi

the reflectance of light value in each wavelength and 
ǫi|σ

2 ∼ NIID
(
0, σ 2

)
 where “NIID” stands for normal 

independent and identically distributed random varia-
bles, β is the vector of effects for each of the independent 
variables and σ 2 is the variance component associated to 
the residuals.

Model (1) can be further extended to include spatial 
correlation between observations, the so called geo-spa-
tial model which can be written as:

where w = (w1, . . . ,wn)′ is the spatial random effects 
vector with distribution N

(
0, σ 2H(φ)

)
 and τ 2 is the 

variance component of y , H(φ) = exp
(
−φ||si − sj||

)
 , is 

the isotropic correlation function, where ||si − sj|| is the 
Euclidean distance between the site i and j [2].

Another model used frequently in spatial statistics for 
dealing with aerial data is CAR, the model can be written 
as:

where ǫi|τ
2 ∼ NIID

(
0, τ 2

)
 , τ 2 > 0 and cij > 0 are 

covariance parameters, with cii = 0 for all i. For the set of 
full conditional distributions to determine a well-defined 
joint distribution for y we need to consider:

(2)yi = xtiβ + wi + ǫi

(3)yi|yj:i �=j = xtiβ +
∑n

j=1
cij

(
yj − xtjβ

)
+ ǫi

y ∼ N
(
Xβ , τ 2(DM − φM)−1

)

Fig. 1 Boxplot of wheat grain phosphorus in each of the 21 genotypes for each of the 3 years
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where τ 2 is the variance component of y , M the neigh-
borhood matrix, DM =

∑n
j=1mij and φ is the autocor-

relation parameter related to the ordered eigenvalues (
�(1) < �(2) < · · · < �(n)

)
 of DM

1/2MDM
1/2 (for see more 

details consult [2]).

Selection Criteria
Intrinsic to the adjustment, the method includes 
the selection of bands (variables), by adapting the 
method proposed by [10], which induces variable 
selection. As a result, the posterior probability is 
obtained, p

(
βj  = 0|data

)
 , where βj is the regression 

coefficient corresponding to the j-th band. Or similarly, 
p
(
γj = 1|data

)
 , where γj is an indicator variable 

corresponding to the j-th band, which is equal to 1 
if βj  = 0 , and 0 otherwise. With this information the 
spectral bands can be selected under two criteria:

Those with p
(
βj  = 0|data

)
≥ 0.6 [3].

The γ vector represents a submodel, its probability was 
obtained by counting the frequency of each submodel, 
in this way we can classify the submodels and identify 
which one is the most likely (avgmod).

Once the previous criteria for band selection have 
been applied and their respective parameters have been 
estimated in each model, the Deviance Information 
Criterion (DIC) [20] is calculated in order to select the 
best model.

Sampling model and likelihood function
Assuming a random sample from (1), (2) and (3) 
respectively. Then the conditional distribution for (1) 
yi|β , σ

2 is normal with mean xtiβ and variance σ 2 . The 
conditional distribution for (2) yi|β , σ 2, τ 2,φ,w is normal 
with mean xtiβ + wi with variance τ 2 . Finally, conditional 
distribution for (3) yi|β , τ 2,φ is normal with mean xtiβ 
and variance τ 2

(∑n
j=1mij − φmi.

)−1

 . In general, we the 
joint conditional distribution of y|θ is given by 
p
(
y|θ

)
=

∏n
i=1 p

(
yi|θ

)
 , where θ denote the model 

unknowns for each model.

Prior distributions
In order to complete the specification of the models, we 
assign prior distribution to the model unknowns. Let 
p
(
βj|γj

)
=

(
1− γj

)
pspike

(
βj
)
+ γjpslab

(
βj
)
 , with 

p(γ j = 0) = pj , pspike
(
βj
)
= I(0)(β j) and 

pslab
(
βj
)
= N (βj|µj , νj) for each model. For model (1) 

σ 2|α11, η11 ∼ IG(α11, η11) . In model (2) 
σ 2|α21, η21 ∼ IG(α21, η21), τ 2|α22, η22 ∼ IG(α22, η22) and 
for φ > 0,φ|min,max ∼ U(min, max) . And for model (3) 
τ 2|α31, η31 ∼ IG(α31, η31) and φ| 1

�(1)
, 1
�(n)

∼ U
(

1
�(n)

, 1
�(1)

)
 . 

With IG(α, η) we denote an inverse gamma distribution, 
whose probability density function is 
f (x;α, η) = ηα

Ŵ(α)
(1/x)α+1exp(−η/x) where α and η 

correspond to the shape and rate parameters, 
respectively. The joint priori distribution p(θ |H) of each 
model unknows is given by:
p
(
β , σ 2|H1

)
∝ p(β|γ )p

(
σ 2|α11, η11

)
 for model (1), 

where H1 = {α11, η11} is the set of hyper-parameters.
p
(
β , σ 2, τ 2,φ,w|H2

)
∝ p(β|γ )p

(
σ 2|α21, η21

)

p
(
τ 2|α22, η22

)
p(φ|min,max)p

(
w|σ 2,φ

)
 for model (2), 

where H2 = {α21, η21,α22, η22,min,max} is the set of 
hyper-parameters.
p
(
β , τ 2,φ|H3

)
∝ p(β|γ )p

(
τ 2|α31, η31

)
p
(
φ| 1

�(1)
, 1
�(n)

)
 

for model (3), where H3 =

{
α31, η31,

1
�(1)

, 1
�(n)

}
 is the set 

of hyper-parameters.

Posterior distributions
The joint posterior distribution of all quantities can be 
obtained by applying the Bayes’ theorem, so we obtain 
p(θ |data,H) ∝ p

(
y|θ

)
p(θ |H).

The hierarchical structure of this distribution allows 
us to obtain the conditional distributions necessary to 
implement the Gibbs sampler [8] and draw samples from 
the joint posterior distribution, in other form this distri-
bution is analytically un-tractable. Not all full conditional 
distributions have a closed form, for that reason was nec-
essary to implement the Metropolis–Hastings algorithm 
[6]; the algorithms are described in the Appendix.

The hyper-parameters for the inverse gamma 
distributions are set as α = η = 0.01 because it provides 
a weakly informative prior [14]; for the uniform 
distributions are set as min =0, max = 1 , and �(1), �(n) are 
the eigenvalues mentioned in model (3).

Software
The algorithm to fit models was implemented in a 
program written in R [18]. The input arguments are 
the response vector y, the matrices X,w,M, the number 
of Markov Chain Monte Carlo (MCMC) iterations, a 
burn-in period and the hyper-parameters. The outputs 
provide the mean of the predictive distribution obtained 
through the MCMC algorithm and provides us with the 
variables selected under the selection criteria previously 
described, it also computes the DIC [20] and it provides 
the correlations that are obtained when making the 
cross validations. Three libraries from R were used, 
MCMCpack [15], mvtnorm [9] and truncnorm [16].

Simulations
To evaluate the behavior of the variable selection 
procedure in each model, a simulation experiment 
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was carried out, this consisted of generating X 
with 100 random variables from a normal standard 
distribution, based on linear combinations xi + xj = xk 
with i ∈ {1, 3, 5, . . . , 99} , j ∈ {2, 4, 6, . . . , 100} and 
k ∈ {101, 102, . . . , 150} were generated 50 more variables, 
this to simulate the multicollinearity expected in real 
dataset. The neighborhood matrix was the same as 
in the real dataset. β with values close to zero was 
also generated to specify variables with little effect 
and large values for the most important variables, 
let A = {2, 6, 13, 33, 25, 67, 71, 77, 85, 94, 96, 99} and 
B = {1, 2, 3, . . . , 150} then βj = 0.9 with j ∈ A , βj = 0.01 
with j ∈ B− A ; and values were set for the parameters 
σ 2 = 0.3, τ 2 = 0.45,φ = 0.21 . Using those data and 
conditional distribution we simulated y for each model. 
Finally, we used the simulated data as an input in our R 
script in order to check that in each model the desired 
parameters are being correctly estimated.

Cross validation and predictions
In order to have a reference regarding the predictive 
power of the models used, cross validation was per-
formed. The response vector, y, was divided into 2 disjoint 
sets, randomly, always considering 25 observations for 
the testing data set and 101 for the training set. In such a 
way that y = 

(
ytraining , ytesting

)
′ . Also, the matrix of covar-

iates or bands, was divided in a way that corresponded 
to the values of y, such as X =

(
Xtraining ,Xtesting

)
′ The 

models were fitted with the information correspond-
ing to the “training”, and the adjusted model was used to 

predict the response of the “testing” set. This procedure 
was repeated 5 times.

Results
The results presented below are derived from 100,000 
iterations. The first 50,000 were discarded, to ensure 
convergence (which was validated graphically using the 
trace plots). As a sample, one in 5 of the last 50,000 were 
considered, with which the averages of each parameter 
involved, called a point estimate, were calculated. For 
example, for the model without spatial correlation, the 
point estimation of the parameters is denoted as 

(
β̂ , σ̂ 2

)
 . 

For the CAR model, the point estimation of the 
parameters is denoted as 

(
β̂ , τ̂ 2, φ̂

)
 , and 

(
β̂ , σ̂ 2, τ̂ 2, φ̂

)
 for 

the geospatial model. The DIC was calculated for each 
model. p

(
βj  = 0|data

)
 was calculated as a measure of 

importance of each band and the most probable models, 
and as a measure of the predictive power of the models 
the Pearson’s correlation between ytesting and ŷtesting (the 
prediction of response variable based on the model 
adjusted with the information in the “training” set) of 
cross validation.

In Figs. 2, 3, 4, we show the trace plots and posterior means 
of parameters of interest for each year when considering all 
wavelengths for models (1), (2) and (3). Note that the vari-
ability of the data is very similar between 2010 and 2011 (see 
σ̂ 2 in the case of the model without spatial correlation and τ̂ 2 
in the CAR). The 2012 variance is smaller than in the previ-
ous years. This difference could be attributed to the fact that 

Fig. 2 Trace plots and posterior means of estimated parameters in the model without spatial correlation per year
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different genotypes were used for the experiment in this last 
year.

With respect to the parameter of spatial variation 
(
φ̂

)
 

in the CAR model, values were found around and above 
0.5, depending on the year, which indicates a positive 
dependence between the plots studied. In the case of the 
geospatial model it is observed that the maximum 

distance from which there is spatial dependence is φ̂  = 
0.3 and that the maximum variability in the absence of 
spatial dependence is σ̂ 2 = 0.2, approximately.

In Figs.  5, 6, 7 the value of the posteriori probability 
for each spectral band is observed at each point, that is 
p
(
βj  = 0|data

)
 graphically, the light spectrum to which 

they belong is also illuminated. The black dots represent 

Fig. 3 Trace plots and posterior means for parameters in the geospatial model by year

Fig. 4 Trace plots and posterior means of parameters in the CAR model per year
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a posteriori probability of the spectral bands selected by 
the most probable model, and above the blue horizontal 
line, which represents the posterior probability of 0.6, are 
the important spectral bands.

It can also be observed that in general the posterior 
probability of the spectral bands is greater in the visible 
spectrum from green to red, that is, in the range of 
500 to 690  nm, regardless of the fitted model or the 
year of the experiment. However, there are no specific 
or recurring wavelengths that can be considered in 
general to directly relate them to the behavior of the 
phosphorus content in wheat grain.

As mentioned, the way to select the best model 
was through the DIC. In Table  1 it can be seen the 
CAR model was the selected model, since the value 
of the DIC obtained is the smallest for all scenarios 
considered and is even lower if we consider a model 
that includes only selected bands.

To measure the predictive power of the models, 
cross validation was used. Table  2 shows the Pearson’s 
correlation coefficient calculated between ytesting and 
ŷtesting in each of the models used, for each year, for 
each wavelength selection. Consistently, it is observed 
that the CAR model on average is the one that has the 

Fig. 5 Posterior probability of the spectral bands of each year of the model without spatial correlation
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best predictive power when presenting the highest 
correlations.

Once the CAR model was selected to model the P 
content in the wheat grain, we proceeded to select from 
the literature some vegetative indexes that have been 
used to monitor the nutrient content in plants (N, P, K, 
S), as done in [13] and with these evaluate the prediction 
of the CAR model. The same 5 subsets of cross-validation 
tests were used to calculate the vegetation indices in 
Table  3 and obtain the correlation coefficient for each 
year. In general, for the three years, the results with the 
CAR model are better than with the vegetative indices, 

since their average correlation remains constant above 
0.6 or more, rather what stands out is the fact that the 
vegetative indices alone cannot be trusted because is 
clearly observed that we can have both good results as in 
the case of year 2011 and 2012, but very bad in the year 
2010 (Table 3).

Conclusion
Under the model selection criterion, DIC, it was con-
cluded that the best of the adjusted models was the CAR. 
With the result of the cross-validation, it was concluded 

Fig. 6 Posterior probability of the spectral bands of each year of the geospatial model
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Fig. 7 Posterior probability of the spectral bands of each year of the CAR model

Table 1 DIC values

Selection criterio

All bands p
(

βj  = 0|data
)

≥0.6 Avgmod

Model 2010 2011 2012 2010 2011 2012 2010 2011 2012

SCE 590.67 534.12 886.98 335.74 333.37 552.68 466.71 434.38 731.89

Geospatial 438.87 461.98 288.03 485.25 314.71 548.48 542.73 392.09 493.97

CAR 242.97 226.02 121.83 254.92 233.35 162.73 239.87 211.82 102.87
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that the model with the best predictive power coincided 
with the best-adjusted model, that is, the CAR.

This was expected given that the spatial dependence 
in a CAR model can separate and clarify the structural 
and functional components, with the structural ones we 
understand the correlation that is determined by physical 
proximity (close neighbors) the functional ones refer to 
the correlation that it is affected by dispersion, landscape 
characteristics and other variables of interest that are 
taken into account by the CAR model. These desirable 
characteristics, which cannot be included with the simple 
calculation of an index, enhance the use of the CAR 
model.

Also, the a posteriori probability obtained by the 
implementation of variable selection in all the evaluated 
models is observed and a repetitive pattern that would 
determine that with the spectral bands selected as the 
most probable and lead to an index built to determine the 
content of phosphorus in the wheat grain was not found, 
however, if it could be concluded that the range of the 
light spectrum that goes from 500 to 690 nm, is the one 
that most likely directly intervenes when predicting the 
phosphorus content in the grain. This information is use-
ful to recommend making a good calibration of the sen-
sor with which reflectance readings will be taken in the 
range found.

Comparing the vegetative indices with the CAR model, 
it was observed that the average correlation of the CAR 

model exceeded that of the vegetative indices by 23.26%, 
−  1.2% and 22.78% for the year 2010, 2011 and 2012 
respectively; therefore, the use of the proposed method-
ology outperformed the vegetative indices in prediction.

Therefore, the use of this methodology is not only 
useful to reduce dimensionality, even when there are 
multicollinearity problems, but also with the posterior 
probabilities obtained, the importance and/or inclusion 
of some band in the prediction model can be decided. It 
is also possible to take into account the inclusion of spa-
tial variability in the model, with which the model (1) was 
surpassed in prediction by up to 19%.

In this research, this methodology is proposed to 
predict the phosphorus content in wheat grain, reflecting 
with the results as a good alternative, however, if the 
reflectance information and the disposition of the 
experiment in the field are available, it is suggested to 
evaluate it with other variable responses of interest such 
as yield for example and in other crops.
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Table 2 Average correlations in cross‑validation

Selection criterio

All bands p
(

βj  = 0|data
)

≥ 0.6 Avgmod

Model 2010 2011 2012 2010 2011 2012 2010 2011 2012

SCE 0.642 0.677 0.652 0.523 0.389 0.635 0.533 0.630 0.634

Geospatial 0.647 0.736 0.749 0.499 0.639 0.630 0.595 0.671 0.733

CAR 0.655 0.709 0.814 0.524 0.621 0.647 0.601 0.680 0.823

Table 3 Average correlations in cross‑validation of vegetative indexes

R corresponds to the reflectance at corresponding subscripted wavelength (nm)

Index Expression Year

2010 2011 2012

Simple Ratio [4] R800−900

R650−700

0.338 0.738 0.666

Normalized difference vegetation index [5] R800−R680

R800+R680

0.356 0.685 0.527

Green normalized difference vegetation index [11] R800−900−R540−560

R800−900+R540−560

0.443 0.674 0.687

Soil adjusted vegetation index [12] 1.5R800−900−R650−700

R800−900+R650−700+0.5
0.353 0.692 0.530

Optimized soil adjusted vegetation index [19] 1.16R800−R670

R800+R670+0.16
0.352 0.671 0.566

CAR model avg 0.601 0.680 0.823

https://doi.org/10.1186/s13007-023-00980-9
https://doi.org/10.1186/s13007-023-00980-9
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