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Abstract 

Background  Karst vegetation is of great significance for ecological restoration in karst areas. Vegetation Indices 
(VIs) are mainly related to plant yield which is helpful to understand the status of ecological restoration in karst areas. 
Recently, karst vegetation surveys have gradually shifted from field surveys to remote sensing-based methods. Cou-
pled with the machine learning methods, the Unmanned Aerial Vehicle (UAV) multispectral remote sensing data can 
effectively improve the detection accuracy of vegetation and extract the important spectrum features.

Results  In this study, UAV multispectral image data at flight altitudes of 100 m, 200 m, and 400 m were collected to 
be applied for vegetation detection in a karst area. The resulting ground resolutions of the 100 m, 200 m, and 400 m 
data are 5.29, 10.58, and 21.16 cm/pixel, respectively. Four machine learning models, including Random Forest (RF), 
Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Deep Learning (DL), were compared to test 
the performance of vegetation coverage detection. 5 spectral values (Red, Green, Blue, NIR, Red edge) and 16 VIs were 
selected to perform variable importance analysis on the best detection models. The results show that the best model 
for each flight altitude has the highest accuracy in detecting its training data (over 90%), and the GBM model con-
structed based on all data at all flight altitudes yields the best detection performance covering all data, with an overall 
accuracy of 95.66%. The variables that were significantly correlated and not correlated with the best model were the 
Modified Soil Adjusted Vegetation Index (MSAVI) and the Modified Anthocyanin Content Index (MACI), respectively. 
Finally, the best model was used to invert the complete UAV images at different flight altitudes.

Conclusions  In general, the GBM_all model constructed based on UAV imaging with all flight altitudes was feasible 
to accurately detect karst vegetation coverage. The prediction models constructed based on data from different flight 
altitudes had a certain similarity in the distribution of vegetation index importance. Combined with the method of 
visual interpretation, the karst green vegetation predicted by the best model was in good agreement with the ground 
truth, and other land types including hay, rock, and soil were well predicted. This study provided a methodological 
reference for the detection of karst vegetation coverage in eastern China.
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Background
Karst environments are areas where slightly dissolved 
rock outcrops and efficient acid hydrolysis create spec-
tacular dissolved landforms [1]. Karst areas have been 
distributed around the world and cover about 15% of 
Earth’s surface [2]. The carbonate rocks in Southeast 
Asia, which is the largest karst area in the world, are 
continuously exposed and its ecological environment is 
extremely vulnerable to human activities [3]. Karst areas 
have high complexity and strong spatial and tempo-
ral heterogeneity. It is a comprehensive reflection of the 
staggered distribution of various ground objects such as 
bedrock, vegetation, and soil cover [4].

As an important part of global vegetation, karst veg-
etation not only provides a great carbon sink function 
but also provides a series of ecological services, which 
has always been a research hotspot in the field of global 
change [5]. The vegetation in karst areas is critical for 
maintaining fragile local ecosystems [6]. In addition, 
vegetation is a significant sensitive factor that reflects 
changes in the ecological environment of karst areas [7]. 
The coverage of dry vegetation such as litter and bare 
surface soil also plays an important role in the characteri-
zation and evaluation of the degree of land degradation 
[8]. Therefore, it is particularly important to figure out 
the classification and distribution of vegetation popula-
tions in karst areas.

In the early years, many domestic and foreign studies 
on vegetation coverage detection in karst areas intro-
duced many methods. Early research mainly used field-
work methods for vegetation coverage detection. For 
instance, Blasi et  al. [9] conducted a field investigation 
and multivariate analysis of the vegetation communi-
ties in the karst tectonic basin of the Majella Massif 
called plant sociology methods. Bátori  et  al. [10] using 
the Moving Segmentation Window (MSW) technique, 
nested analysis, and Principal Coordinate Analysis 
(PCoA) conducted a field survey in southern and north-
ern Hungary between 2005 and 2012 and revealed veg-
etation patterns in ocean trough. Although field surveys 
hold the advantages of high accuracy but time- and cost-
consuming, and which are not suitable for the detection 
of vegetation in large-scale karst areas.

Recently, with the continuous improvement of the 
spatiotemporal and spectral resolution of remote sens-
ing technology, massive remote sensing image datasets 
have emerged as the times require [11]. It is worth not-
ing that the extraction of ground object information, 
especially vegetation information, employing remote 
sensing images has been largely studied in remote sens-
ing research. In terms of multispectral, the overall accu-
racy of vegetation coverage detection was improved by 
5.57% compared with traditional supervised classification 

using the combination of the Back Propagation Neu-
ral Network (BPNN) model and Landsat-8 Operational 
Land Imager (OLI) multispectral remote sensing images 
[12]. Regarding hyper-spectrum, through linear spectral 
separation and pixel separation methods, hyperspectral 
images can be used to extract ecological indicators such 
as karst vegetation fraction and vegetation abundance, 
which can characterize vegetation coverage to a certain 
extent for vegetation inversion [13, 14]. However, most 
remote sensing satellite images involve visual interpreta-
tion and computer-aided digital processing of aerial pho-
tography and satellite images, which are highly subjective 
and inefficient, and limit the ability to distinguish and 
identify ground objects in karst areas [15, 16].

Karst areas are characterized by thin soil layers and 
exposed rocks. Since the ground cover in karst areas is 
often a mixture of several types (vegetated and non-veg-
etated), it is difficult to accurately extract the main fea-
tures of vegetation cover [17]. Vegetation, soil, and rocks 
have high reflectance to different wavelengths of visible 
light, which makes the difference between karst vegeta-
tion and non-vegetation in UAV multispectral images 
significant. Xiao et  al. [18] pointed out the method of 
using vegetation index to distinguish karst vegetation 
from non-vegetation. To solve the problems of low image 
resolution and inaccurate vegetation coverage detec-
tion, UAV remote sensing technology is rapidly going 
mainstream [19]. Among recent innovations, UAVs are 
suitable for tracking and assessing vegetation conditions 
in time, with several advantages: (1) They can fly at low 
flight altitudes, providing high-definition aerial imagery 
and high spatial resolution, fine details of vegetation can 
be detected, (2) flights can be flexibly scheduled accord-
ing to critical moments imposed by vegetation over time, 
(3) they can be acquired in different ways using different 
sensors and the range of perception systems of vegetation 
spectrum (visible, infrared, thermal), (4) this technique 
can also generate the Digital Surface Model (DSM) with 
Three-Dimensional (3D) vegetation measurements by 
using highly overlapping images and applying an image 
reconstruction procedure with Structure from motion 
(SFM) techniques [20]. As such, UAVs are a cost-effec-
tive tool for acquiring high spatial resolution 3D data of 
plants and trees where satellite platforms are not feasi-
ble, filling the gap between ground-based equipment and 
other traditional remote sensing systems. Beyond that, 
UAV-based digital imagery can effectively replace data 
collected through laborious, subjective, and destruc-
tive manual fieldwork [21]. Due to these advantages, the 
UAVs are becoming quite suitable platforms for vegeta-
tion coverage detection in karst areas [22], mainly using 
RGB [23, 24], multispectral [25, 26], hyperspectral [27], 
and lidar [28] sensors.
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The large amount of detailed data embedded in UAV 
imagery requires the development and application of 
powerful advanced analysis programs for extracting 
information related to vegetation structure and biochem-
ical composition to better understand relevant plant 
traits [29, 30]. Bolin Fu et al. [31] set the flight altitude of 
the UAV to 105 m uniformly and used an optimized Ran-
dom Forest—Decision Tree (RF-DT) model to extract 
vegetation communities, which explored the optimal 
detection variables for various types of vegetation. Zhang 
et al. [32] set the flight altitude to 100 m and used UAV-
based hyperspectral images, combined with SVM and 
Edge-Preserving Filter (EPF), to automatically extract 
tree canopies damaged by Chinese pine caterpillars and 
perform more refined classification. Mäyrä et al. [33] col-
lected data from a flight altitude of 1500 m and compared 
the performance of Three-Dimensional Convolutional 
Neural Network (3D-CNN), GBM, DL, etc. in the clas-
sification of individual tree species in hyperspectral data 
and used the best performing 3D-CNN as a complete 
tree species map was generated for the study area. These 
studies show that machine learning algorithms such as 
RF, SVM, GBM, and DL algorithms have been widely 
used in the detection of vegetation coverage detection. 
When combining different UAV flight altitudes and fea-
ture variables, the detection accuracies of various models 
show significant differences.

At present, the vegetation cover research of karst areas 
is focused on the continuous karst area in southwest 
China, which is the center of the karst area in South-
east Asia [34]. There are obvious differences between 
the karst areas in Southwest and Eastern China. The for-
mer is difficult to grow due to the sparse soil cover and 

there are many tree species with strong stress resist-
ance such as cypress. In contrast, the latter has deep soil 
cover, lush vegetation, and high coverage. In addition, 
there are few studies on vegetation cover in karst areas 
of eastern China. Therefore, it is necessary to understand 
the changes in vegetation cover in the karst areas of east-
ern China to achieve sustainable development of karst 
ecosystems.

In this study, we focus on karst ecosystems to dem-
onstrate the use of efficient analytical methods for UAV 
multispectral datasets (such as RF, SVM, GBM, and DL) 
and aim to answer the following questions:

1.	 In the multispectral data of different UAV flight alti-
tudes, how accurate are the four models of RF, SVM, 
GBM, and DL in identifying karst vegetation cover-
age?

2.	 In the optimal variable selection, how is the veg-
etation indices’ importance distribution of the best 
models at each flight altitude?

3.	 Combined with the method of visual interpretation, 
how well do the vegetation distribution of the three 
flight altitudes predicted by the best model fit with 
the respective real vegetation distribution?

Materials
Study area
The study area is located in Wanshi, Fuyang, Hangzhou, 
Zhejiang, China (30°6′9″N, 119°31′46″E; Fig.  1), with a 
total area of 157.9 square kilometers. The region has a 
subtropical monsoon climate, with an average annual 
temperature of about 16.3  °C and an average annual 

Fig. 1  The sketch map of study area
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rainfall of about 1479.3 mm. The vegetation cover in the 
study area is mainly cypress, miscellaneous shrubs, and 
Miscanthus (stem).

UAV multispectral imagery collection
A commercial DJI Phantom 4 multispectral UAV (DJI, 
Shenzhen, China), which is equipped with one Red–
Green–Blue (RGB) sensor and five multispectral sen-
sors with each of 2.08 effective megapixels, was used 
for capturing images of the study area. The UAV has a 
real-time kinematics (RTK) positioning system based on 
satellite navigation, which reduces the error of satellite-
based position data to the centimeter level. The informa-
tion about the five bands of the UAV camera is shown in 
Table 1. The weight, image resolution, and sensor size of 
the UAV multispectral camera are 1487  g, 1600 × 1300 
pixels, and 4.87 × 3.96  mm, respectively. More param-
eters of the camera are shown in Table 2. Since the cam-
era collects RGB and five spectral images through the 
sunlight sensor, it records the illuminance information of 
each image, which facilitates the post-calibration of mul-
tispectral images. Additionally, a control panel built into 
the UAV can be used to automatically adjust the radio-
metric reflectance calibration and directly acquire reflec-
tance spectral data. Online access to the details of DJI 
Phantom 4 multispectral UAV is https://​www.​dji.​com/​
p4-​multi​spect​ral/​specs.

To ensure consistent environmental conditions such as 
weather, light, wind direction, and wind speed, we chose 

to capture UAV images at different altitudes on the same 
day. The UAV image data acquisition was conducted on a 
clear and windless day at the times from 12:00 to 2:00 pm 
on January 13, 2022. The higher the flight altitude, the 
larger the flight coverage area. The image overlaps the 
line by 80%. The flight altitudes were set at 100 m (flight 
surface: 6.01  ha), 200  m (flight surface: 14.01  ha), and 
400 m (flight surface: 40.63 ha) above the ground, respec-
tively. The total flight mission takes about two hours to 
complete.

UAV image data acquisition
Georeferencing of raw images is achieved through RTK 
systems. The camera parameters and POS parameters 
corresponding to each aerial image are obtained accord-
ing to the calibration results of the UAV camera, the air-
borne Differential Global Positioning System (DGPS), 
and the flight controller. Parameters include 178 horizon-
tal and vertical errors less than 0.1  m [35]. Pix4D map-
per software (version 4.2.27, Pix4D SA, Switzerland) 
was used to stitch the complete raw images generated 
for georeferenced spectral reflectance and VIs mosaic 
calibration. Aerial triangulation was the initial step in 
the UAV photogrammetry workflow and could be used 
to determine the individual orientations of each diorama 
of the photogrammetry block. The SFM and Multi-View 
Stereo (MVS) algorithms were performed by the Pix4D 
mapper, performing bundle adjustment. We oriented an 
unlimited number of images across the block by bundling 
adjustments and multiple ground control points (GCPs). 
The GCPs for each flight has 5 points, one in each of the 
four corners of the flight area and one in the middle of 
the area. Aerial triangulation of each sensor also consid-
ered its specific lens distortion to determine the position 
and orientation of each sensor. Combining the above 
data, a dense point cloud for multi-view stereo matching 
could be formed, to achieve the purpose of surface recon-
struction, and generate orthomosaics images [36].

Next, high-resolution GeoTIFF images including 
reflectance and VIs were generated, at the same location 
with different flight altitudes. GeoTIFF images were fur-
ther processed in ENVI 5.3 (Esri Inc., Redlands, USA) to 
define regions of interest (ROI). The average reflection 
spectrum values of objects within the ROI range were 
taken as the reflection spectrum of the sampling point 
and the multispectral data corresponding to various 
ground objects at the sampling point were obtained.

Methods
Modeling methods
For karst vegetation coverage detection, we focused on 
comparing the efficiency of four models: RF, SVM, GBM, 
and DL.

Table 1  Spectral parameters of the multispectral camera of the 
DJI multispectral UAV

Band name Center wavelength (nm) Bandwidth 
(nm)

Red 650 16

Green 560 16

Blue 450 16

NIR 840 26

Red edge 730 16

Table 2  Specification of DJI multispectral UAV camera

Criteria Lens

FOV 62.7°

Focal length 5.74 mm (35 mm format equivalent: 
40 mm) infinite fixed focal length

Aperture f/2.2

ISO range for color sensors 200–800

Monochromatic sensor gain 1–8 times

Electronic global shutter 1/100–1/20000S (visible light imaging)

1/100–1/10000S (multispectral Imaging)

https://www.dji.com/p4-multispectral/specs
https://www.dji.com/p4-multispectral/specs
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RF
RF is an ensemble classifier that generates multiple deci-
sion trees using randomly selected training samples and 
subsets of variables [37]. This classifier has become pop-
ular in the remote sensing community due to its classi-
fication accuracy [38, 39]. Not only can RF process and 
multicollinear high-dimensional data successfully, but it 
is also fast and insensitive to overfitting, and it is sensi-
tive to sampling design [40, 41]. The variable importance 
measure provided by RF has been widely used in different 
scenarios, such as selecting the best variable to classify a 
specific target class [42].

SVM
SVM is a supervised learning model with associated 
learning algorithms for classification, regression analysis, 
and outlier detection of data [43]. In addition to reduc-
ing the complexity of the approximation function while 
ensuring the accuracy of data approximation, the SVM 
algorithm also has a lot of advantages in solving large 
samples and high-dimensional space problems [44]. At 
present, it has been successfully applied to spectral analy-
sis research.

GBM
To solve the problem that it is not easy to optimize each 
step of the general loss function, Friedman [45] proposed 
the gradient boosting machine algorithm, whose idea is 
borrowed from the gradient descent method. The basic 

principle of GBM is to train the newly added weak classi-
fier according to the negative gradient information of the 
loss function of the current model and then combine the 
trained weak classifier into the existing model in the form 
of accumulation [46].

DL
A DL architecture is a multilayer stack of simple mod-
ules that attempts to learn deep features of input data 
hierarchically through very deep neural networks, many 
of which compute nonlinear input–output mappings 
[47]. With multiple layers of nonlinearity in DL, a sys-
tem can implement extremely complex functions of its 
input that are sensitive to minute details and insensitive 
to irrelevant changes in the background and surrounding 
objects [48]. According to the training process, DL is first 
initialized hierarchically through unsupervised train-
ing and then adjusted in a supervised manner. In this 
scheme, high-level features can be learned from low-level 
features, and suitable features can eventually be used for 
classification [49].

Spectral vegetation indices selection
Spectral methods are considered potential methods for 
predicting photosynthetic pigment content, leaf spec-
tral properties are used for reflectance spectra (e.g. VIs), 
and the physiology of individual trees or populations 
will be estimated at the stand level [50]. However, differ-
ent VIs may produce different vegetation characteristic 
reflections and these indicators may also be affected by 

Table 3  Details of selected vegetation indices tested in this research

NIR, E, R, G, and B represent the near-infrared, red edge, red, green, and blue bands, respectively

Name Formula References

NDVI (normalized difference vegetation index) (NIR − R)/(NIR + R) [70]

OSAVI (optimized soil adjusted vegetation index) ((NIR − R)(1 + 0.16))/(NIR + R + 0.16) [71]

GNDVI (green normalized difference vegetation index) (NIR − G)/(NIR + G) [72]

SAVI (soil adjusted vegetation index) ((NIR − R)(1 + 0.5))/(NIR + R + 0.5) [73]

MSAVI (modified soil adjusted vegetation index) (2NIR + 1 − √((2*NIR + 1)2–8*(NIR − R)))/2 [74]

GCI (green chlorophyll Index) NIR/G-1 [75]

RECI (red edge chlorophyll index) NIR/E-1 [75]

LCI (leaf chlorophyll index) (NIR − E)/(NIR + R) [76]

GRVI (green red vegetation index) (G − R)/(G + R) [77]

MGRVI (modified green red vegetation index) (G2 − R2)/(G2 + R2) [62]

RGBVI (red green blue vegetation index) (G2 − R × B)/(G2 + R × B) [78]

NDRE (normalized difference red edge index) (NIR − E)/(NIR + E) [79]

MACI (modified anthocyanin content index) NIR/G [66]

ARI (anthocyanin reflectance index) G/NIR [80]

MARI (modified anthocyanin reflectance index) (G(−1) − E(−1))/NIR [81]

VDVI (visible-band difference vegetation index) (2G − R − B)/(2G + R + B) [82]
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different vegetation types. To determine the best vari-
ables for vegetation coverage detection, 5 spectral val-
ues (Red, Green, Blue, NIR, Red edge) and 16 VIs were 
selected, as shown in Table  3, including NDVI, OSAVI, 
GNDVI, SAVI, MSAVI, GCI, RECI, LCI, GRVI, MGRVI, 
RGBVI, NDRE, MACI, ARI, MARI, and VDVI.

The NDVI is the most commonly used indicator of veg-
etation greenness/vitality, showing strong correlations 
with Leaf Area Index (LAI) and green biomass, providing 
information for estimating Net Primary Production and 
enabling us to distinguish vegetation from non-vegeta-
tion [51]. The OSAVI can be used to reduce the effect of 
soil background on sparse and dry vegetation [52]. The 
GNDVI is highly sensitive to chlorophyll and reduces 
non-photosynthetic effects, which can provide valuable 

Table 4  Parameters of the models at each flight altitude and 
total

Flight 
altitude 
(m)

Model Classification R (%) F1 (%) OA (%)

100 GBM gv 98.71 99.03 98.61
ro 99.67 99.51

so 97.12 98.34

wd 98.51 97.30

RF gv 98.84 98.91 98.55

ro 99.34 99.50

so 97.12 98.33

wd 98.26 97.29

SVM gv 97.81 98.06 97.51

ro 98.36 99.17

so 97.12 97.72

wd 96.52 95.10

DL gv 97.68 97.87 95.83

ro 98.36 99.17

so 83.95 91.07

wd 97.51 92.23

200 GBM gv 99.31 99.31 99.11
ro 100.00 99.54

so 97.09 97.56

wd 98.82 98.82

RF gv 99.31 99.03 98.70

ro 100.00 99.77

so 94.17 95.10

wd 97.93 98.22

SVM gv 98.89 98.55 97.95

ro 97.70 98.83

so 93.20 92.75

wd 97.34 97.48

DL gv 97.92 97.52 92.70

ro 99.08 94.09

so 58.25 73.17

wd 97.04 90.36

400 GBM gv 98.74 98.58 98.53

ro 99.23 99.42

so 90.87 93.33

wd 93.89 95.56

RF gv 99.23 98.68 98.45

ro 98.08 98.65

so 88.94 92.04

wd 92.36 94.84

All represents the total including 100 m, 200 m and 400 m data

Bold values represent the highest overall accuracy of the models at each flight 
altitude

Table 4  (continued)

Flight 
altitude 
(m)

Model Classification R (%) F1 (%) OA (%)

SVM gv 98.38 97.65 96.97

ro 89.23 91.7

so 69.71 74.55

wd 88.65 93.55

DL gv 96.53 94.13 89.67

ro 90.77 86.61

so 0.48 0.96

wd 38.86 55.97

all GBM gv 98.44 98.14 97.81

ro 96.93 97.81

so 90.45 93.22

wd 95.75 96.27

RF gv 98.60 98.09 97.76

ro 96.81 97.87

so 90.63 93.15

wd 95.58 96.06

SVM gv 97.01 96.35 94.68

ro 93.36 92.71

so 65.95 75.39

wd 91.83 92.64

DL gv 89.77 93.72 92.45

ro 93.61 95.01

so 81.08 72.00

wd 95.41 93.43
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information on complex landscapes [53]. The SAVI is 
more sensitive to vegetation, allowing us to observe areas 
of potential soil degradation [54]. The MSAVI is com-
monly used to detect sparsely vegetated areas where soil 
background influences are important, minimizing exter-
nal influences and enhancing vegetation signals [55]. A 
low MSAVI means sparse vegetation, indicating deser-
tification [56]. The GCI is an index for estimating the 
chlorophyll content of various plant leaves and detecting 
the physiological state of vegetation, which can be used 
to evaluate the growth state of vegetation [57]. The RECI 
constructed from red edge bands is more sensitive than 
the traditional vegetation index in estimating vegetation 
biomass [58]. The LCI is a chlorophyll-sensitive vegeta-
tion index with a wide range of chlorophyll content and is 
hardly affected by disturbances caused by scattering [59].

The GRVI is sensitive to leaf color changes (chloro-
phyll and fall coloration) and can be used to differenti-
ate green vegetation, water, and soil [60]. The GRVI uses 
the high reflectivity of plants in green (about 540  nm) 
and the absorption of the red and blue parts of the visible 
spectrum (400–700 nm) by plant chlorophyll to identify 
vegetation [61]. The squared band reflectance value helps 

to amplify the difference between red, green, and blue 
reflectance [62]. The MGRVI is defined as the normal-
ized difference between squared green reflectance and 
squared red reflectance, and thus exhibits higher sensi-
tivity in vegetation identification [63]. The RGBVI can 
be used to extract vegetation cover from drone orthoim-
ages [64]. The NDRE is an important predictor of canopy 
properties and is very sensitive to canopy chlorophyll 
content [65]. The MACI correlates with anthocyanin con-
tent in plant leaves, providing valuable information about 
the physiological state of plants [66]. The ARI can be 
used to assess vegetation health [67]. The MARI has the 
potential to further aid in the classification of senescent 
vegetation [68]. Since there are significant differences in 
the absorption efficiency of vegetation to different wave-
lengths, the VDVI can be used to detect vegetation pixels 
and effectively enhance vegetation information [69].

UAV data analysis methods
In this study, 100  m, 200  m, and 400  m data were ran-
domly sampled through the e1071 package [83], and 
tidyverse package [84] of R software. The collected data is 

Fig. 2  Confusion matrix of best models (GBMs)
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divided into the training set and validation set, of which 
80% is the training set and the remaining 20% is the vali-
dation set [85]. The RF, SVM, GBM, and DL models were 
established on test data with flight altitudes of 100  m, 
200  m, and 400  m, respectively. All modeling was per-
formed in R software, the randomForest package [86] was 
used for RF modeling, the caret package [87] was used 
for SVM modeling and the h2o package [88] was used for 
GBM and DL modeling, respectively.

Model accuracy verification
After the models were constructed, the confusion matrix 
for each model was obtained through the caret package 
[87] in R software. A confusion matrix of size n × n asso-
ciated with the classifier shows the predicted and actual 
classifications, where n is the number of distinct classes 
[89]. The prediction accuracy and classification error can 
be obtained from this matrix as follows:

where a is the number of correct negative predictions, b 
is the number of incorrect positive predictions, c is the 
number of incorrect negative predictions, and d is the 
number of correct positive predictions. The fitting and 
predictive ability of each model were evaluated in com-
bination with the overall accuracy. The higher the overall 
accuracy, the better the model fitting and prediction abil-
ity, and the higher the model accuracy.

In addition, the relationship between the overall accu-
racy, recall and f1 score of the machine learning model 
to detect karst vegetation should be considered. The 
parameters recall (R), F1-score (F1), and overall accuracy 
(OA) were used for RF, SVM, GBM, and DL model per-
formance [30]. Overall accuracy is a widely used metric 
in classification, it expresses the ratio between the model 
and the total number of predictions on all test sets. For 
raw samples and predictions, recall and precision are the 
ratios of correct predictions to the total number of actual 
or predicted items in the ensemble, respectively. Gener-
ally, precision and recall are a contradictory pair of meas-
ures, when one is higher, the other tends to be lower. The 
F1 score is the harmonic mean of precision and recall, 
with 1 being the best and 0 being the worst [90].

Three quantities from the performance of a classifica-
tion process in the population of all instances were used 
to calculate R, F1, and OA: True positives (TP), false pos-
itives (FP), true negatives (TN), and false negatives (FN) 
using below the equations [91]:

(1)Accuracy = (a + d)/(a + b + c + d)

(2)Error = (b + c)/(a + b + c + d)

where P, AA, and n are the precision, the average accu-
racy, and the number of the classes [green vegetation 
(gv), rock (ro), soil (so), and weed (wd)], respectively. 
The accuracy of a classification process was defined as 
the portion of true positives and true negatives in all 
instances.

Important variable selection
In predictive modeling, the main concern is to identify 
the most important predictors included in the reduced 
model. This can be achieved by identifying the best 
predictors based on statistical characteristics such as 
importance or accuracy [92]. Using variable selection to 
develop predictive models can not only reduce the bur-
den of data collection but also improve predictive effi-
ciency in practice. Since many datasets have hundreds 
or thousands of possible predictors, variable selection is 
often a necessary part of predictive model development 
[93]. In this study, we used the h2o package [94] in R 
software to perform significant variable selection on the 
model with the highest overall accuracy and to determine 
the best predictors for the model. Two additional files 
show this in more detail [see Additional files 1-2].

Best model inversion and determination
To determine the best model for consistency and accu-
racy across all flight altitudes, we used the best models 
built from each flight altitude data to validate the predic-
tion accuracy of the remaining data. After determining 
on which data the best model is based, it is necessary to 
test the prediction accuracy of the model for the remain-
ing altitude data. The performance of the best model is 
tested first on the test set and then on the real set (full 
original images at flight altitudes of 100  m, 200  m, and 
400 m). The images of the three flight altitudes predicted 
based on the best model are compared with the original 
images of the respective real data. Finally, the model with 
the best karst vegetation detection accuracy and karst 
vegetation retrieval performance was determined.

(3)R = TP/(TP + FN)

(4)F1 = 2TP/(2TP + FP + FN)

(5)AA = TP + TNTP + TN + FP + FN

(6)OA = (AA1 + AA1 + AA . . . + AAn)/n
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Results
Analysis of modeling accuracy of karst vegetation 
discrimination
The performance of four models using multispectral and 
VIs at different flight altitudes were shown in Table  4. 
GBM model yields the best vegetation coverage detection 
accuracy at all flight altitudes data, with the best accura-
cies from high to low of 99.11% (200 m), 98.61% (100 m), 
98.53% (400 m) and 97.81% (all) respectively. Figure 2 dis-
played the confusion matrix of each best model (GBM) 
obtained at different flight altitudes. The highest accuracy 
of the GBM model was found at 200 m, the model accu-
racy gradually increases to a certain extent as the flight 
altitude gradually decreases.

Mutual validation analysis of optimal models at different 
flight altitudes
As shown in Table  5, the highest and lowest prediction 
accuracy rates of 95.66% and 66.15% were found when 
using the GBM model from all data to detect 100 m data 
and from 400 m data to detect 200 m data respectively. 
It can be found that the best model of each flight alti-
tude has the highest accuracy to detect its own training 
data, but the accuracies show a downward trend to detect 
other flight altitude data. The above indicates that there is 
a certain degree of difference in the accuracy of the pre-
diction model when training its own data and the rest of 
the data.

Importance analysis of VIs for karst vegetation coverage 
detection
It can be known that the GBM model (GBM_all) estab-
lished based on the overall data works best (Table  5). 
Figure 3 combined with Table 5 shows that the GBM_all 
model has the best accuracy of 95.66% when predicting 
the data with a flight altitude of 100 m, while its accuracy 
is the worst at 88.31% when predicting the data with a 
flight altitude of 400 m.

In addition, the vegetation index importance order of 
the best GBM model at each flight altitude was shown in 
Fig.  4. The accuracy of GBM models based on different 
flight altitudes and overall data were significantly cor-
related with the following vegetation indices: MGRVI 
(100 m, 200 m), RECI (400 m), MSAVI (all). On contrary, 
the accuracy of GBM models based on different flight 

Table 5  Mutual validation parameters of optimal models at 
different flight altitudes

GBM model 
flight altitude 
(m)

Data flight 
altitude (m)

Classification R (%) F1 (%) OA (%)

100 All gv 74.95 85.03 80.41

ro 95.53 59.22

so 70.63 78.87

wd 91.99 90.60

200 gv 72.58 83.71 83.19

ro 99.54 82.92

so 82.52 82.52

wd 95.56 82.71

400 gv 90.35 93.69 84.96

ro 69.23 62.61

so 27.40 35.85

wd 93.89 76.99

200 All gv 98.76 93.53 89.03

ro 88.76 87.37

so 52.43 66.74

wd 75.86 82.97

100 gv 99.36 96.31 94.78

ro 95.74 97.01

so 86.01 92.27

wd 90.48 91.39

400 gv 97.83 96.72 88.82

ro 63.08 67.91

so 25.48 34.08

wd 88.55 80.48

400 All gv 87.77 92.53 80.63

ro 91.15 74.71

so 64.07 47.77

wd 52.21 68.31

100 gv 98.44 98.31 80.21

ro 97.01 69.61

so 39.91 49.01

wd 52.84 69.14

200 gv 78.58 87.04 66.15

ro 87.96 53.45

so 30.21 25.78

wd 38.02 55.09

All 100 gv 97.42 97.92 95.66

ro 96.72 94.10

so 85.27 91.17

wd 97.26 94.90

200 gv 84.30 91.41 89.79

ro 99.08 85.89

so 81.15 78.06

wd 97.39 92.82

400 gv 93.27 95.58 88.31

ro 79.69 74.59

so 36.89 47.35

wd 92.29 78.24

Table 5  (continued)
All represents the total including 100 m, 200 m and 400 m data

Bold represents the highest overall accuracy when the optimal models at 
different flight altitudes were mutually validated
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altitudes and overall data was significantly uncorrelated 
with the following vegetation indices: OSAVI (100  m, 
400 m), SAVI (200 m), and MACI (all). The above shows 
that the prediction models constructed based on data 
from different flight altitudes have a certain similarity in 
the distribution of vegetation index importance.

Inversion of the best model
As shown in Figs. 5, 6 and 7 (the x and y axes in degrees 
represent east longitude and north latitude, respectively), 
the orthomosaics of the three flight altitudes predicted 
based on the GBM_all model were compared with the 
original orthomosaics of the respective real data. The 
orthomosaics for RGB visualization were shown on 
the left in Figs.  5, 6 and 7. Combined with the method 
of visual interpretation, the karst green vegetation pre-
dicted by the best model was in good agreement with 
the ground truth, and other land types including hay, 
rock, and soil were well predicted. It is worth noting that, 
unlike the southwest karst area where vegetation growth 
is difficult, the eastern China karst area to which the 
study area belongs has high vegetation and soil coverage, 
but low rock exposure.

Discussion
In the past, Fu et al. [95] combined four single-class Seg-
Net models to classify karst vegetation with an overall 
accuracy rate of 87.34%. However, the GBM_all model 
proposed by our study had a higher overall accuracy of 
95.66%. Flight altitude determines the final image reso-
lution obtained as well as the effect of topography on 
radiance (by changing the relative angle between terrain 

slopes and the UAV) [96]. Many factors affect the setting 
of the flight altitude, including the weather, temperature 
of the sampling point, and minor differences in flight alti-
tudes. These factors may complicate the obtained image 
background and bring challenges to karst vegetation pixel 
segmentation and model accuracy detection [97]. Larri-
naga et al. [98] found that, contrary to expectations, the 
model fitting accuracy obtained at a higher UAV flight 
altitude was also higher. But in our research, as the flight 
altitude gradually decreases, the model accuracy gradu-
ally improves to a certain extent.

In our study, the vegetation indices that were signifi-
cantly correlated and not correlated with the best model 
(GBM_all) were MSAVI and MACI, respectively, which 
has already been proven in previous studies. For exam-
ple, Qi et  al. [74] found that MSAVI could increase the 
dynamic range of vegetation signals, further reduce the 
influence of soil background, and could be effectively 
used for vegetation detection in karst areas. Anne et  al. 
[99] found that excessive anthocyanins were mainly 
related to the juvenile or senescent state of plants, so 
MACI may not have a significant impact on the detection 
of karst vegetation coverage.

In addition, in this study, the vegetation indices that 
were significantly and not significantly correlated with 
the two flight altitude models were the MGRVI (100 m, 
200 m) and the OSAVI (100 m, 400 m). This may be due 
to differences in lighting during UAV flights [71, 100, 
101]. However, Bendig Juliane, Fern et al. [62, 102] found 
that MGRVI and OSAVI were mainly used for crop iden-
tification rather than forestry karst vegetation coverage 
detection.

Fig. 3  Confusion matrices of GBM models constructed based on overall data for remaining data predictions
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Although the method proposed in this study performed 
well in karst vegetation coverage detection, some aspects 
could be further improved and explored. First, the result-
ing images are orthoimages taken by the drone, and ver-
tical cropping of information may cause some loss. To 
reduce the mutual interference between ground features 
and improve the accuracy of classification, characteristic 
parameters can be added to the interpretation process and 
the layered mask method can be used to select features for 
each layer image [103]. Therefore, we plan to experiment 
with layered images in the future to reduce information 
that can not be displayed due to occlusion. Second, this 
study only compares four commonly used machine learn-
ing methods (RF, SVM, GBM, and DL). Machine learning 
models have complex parameters and structures [104], so 

we plan to try a wider variety of machine learning meth-
ods in the future. In conclusion, UAV multispectral veg-
etation indices have high potential in the field of karst 
vegetation detection and creative results can be achieved 
when fused with machine learning algorithms.

Conclusion
In this work, we proposed a GBM_all model based on 
all flight altitudes image data from UAVs, which could 
accurately detect karst vegetation coverage with an over-
all accuracy of up to 95.66%. This study verified the pre-
diction models constructed based on data from different 
flight altitudes had a certain similarity in the distribu-
tion of vegetation index importance. Combined with the 

Fig. 4  The vegetation indices importance of the best GBM models for each flight altitude
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method of visual interpretation, we found that the karst 
green vegetation predicted by the best model was in good 
agreement with the ground truth, and other land types 
including hay, rock, and soil were well predicted.

UAV images were beneficial to refine the texture fea-
tures of the model, improve parameter information, and 
were more suitable for the detection of karst continu-
ous and complex vegetation. In this study, the combi-
nation of UAV images, multispectral vegetation index, 

and machine learning algorithm has also shown good 
performance in karst vegetation inversion, providing a 
reliable and promising method for the identification of 
vegetation, bare rock, soil in the eastern karst area. In 
addition, timely and accurate detection of karst vegeta-
tion cover will provide important reference information 
for various forestry management departments in karst 
areas to reasonably determine karst vegetation restora-
tion plans and evaluate relevant policies.

Fig. 5  The classification of the best model on the 100 m data. The gv is green vegetation, wd is hay, ro is rock, and so is soil

Fig. 6  The classification of the best model on the 200 m data. The gv is green vegetation, wd is hay, ro is rock, and so is soil
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