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Abstract 

Background The number of soybean pods is one of the most important indicators of soybean yield, pod counting 
is crucial for yield estimation, cultivation management, and variety breeding. Counting pods manually is slow and 
laborious. For crop counting, using object detection network is a common practice, but the scattered and overlapped 
pods make the detection and counting of the pods difficult.

Results We propose an approach that we named YOLO POD, based on the YOLO X framework. On top of YOLO X, we 
added a block for predicting the number of pods, modified the loss function, thus constructing a multi-task model, 
and introduced the Convolutional Block Attention Module (CBAM). We achieve accurate identification and counting 
of pods without reducing the speed of inference. The results showed that the  R2 between the number predicted by 
YOLO POD and the ground truth reached 0.967, which is improved by 0.049 compared to YOLO X, while the inference 
time only increased by 0.08 s. Moreover, MAE, MAPE, RMSE are only 4.18, 10.0%, 6.48 respectively, the deviation is very 
small.

Conclusions We have achieved the first accurate counting of soybean pods and proposed a new solution for the 
detection and counting of dense objects.

Keywords Soybean, Deep learning, Objection detection, Multi-Task learning, Yield estimation

Introduction
The selection of new crop varieties and the improvement 
of cultivation management rely heavily on yield tests. 
For soybeans, the yield is composed of three factors: the 
number of pods per plant, the number of seeds per pod, 
and the seed size [1]. As an important factor affecting 
yield, the number of pods is mainly obtained by manual 
counting. Manual counting is laborious, time-consum-
ing, and error-prone. Therefore, developing an efficient 

and accurate pod counting method is of great signifi-
cance for soybean breeding and cultivation.

Modern breeding requires a large amount of material 
with different genetic backgrounds, making estimat-
ing yield a difficult task. Because of the ease of access 
to digital images and the rapid development of image 
technology, digital images are widely used for crop yield 
estimation. Duan et  al. [2] obtained the projected pani-
cle area, projected area of leaf, stem dimension, and frac-
tal dimension from the images, then estimated rice yield 
through these image features. Zhu et al. [3] used support 
vector machines to detect wheat ears and thus evaluate 
the yield. Pranga et al. [4] used UAV to collect RGB and 
multispectral images and used the Random Forest to 
accurately estimate the yield of Herbage. Through image 
processing techniques and machine learning, crop yields 
can be estimated with high throughput. However, such 
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methods are poorly robust and their accuracy decreases 
when environmental conditions change.

Deep learning has developed rapidly in recent years. 
With the increase of model parameters and the continu-
ous optimization of model structure, deep learning can 
solve more complex tasks and get better performance 
[5, 6]. Estimating yield by deep learning is highly accu-
rate and robust. Shao et al. [7] used the LC-FCN model to 
detect and count rice ears, and Wu et al. [8] used image 
processing techniques and deep learning to count the 
number of rice grains. Lu et al. [9] proposed TasselNet to 
detect and count maize tassels. Wang et al. [10] proposed 
an improved EfficientDet-D0 model for wheat head 
counting. It is an effective approach to estimating yield by 
detecting yield organs, and this approach has been suc-
cessfully applied to many crops.

The soybean yield is highly correlated with the num-
ber of pods [11], however, there are few reports on pod 
identification and counting, and the current methods are 
not effective. For pod detection and counting, there are 
two main issues. First, not accurate enough. Compared 
with maize tassel and wheat head, soybean pods are very 
dense, with heavy overlap between pods. It is difficult 
to identify and locate all pods in the images. Riera et al. 
used RetinaNet for pod detection and counting and the 
highest correlation was only 0.711 [12]. To achieve accu-
rate detection and counting, it is necessary to remove the 
pods from the branches to avoid overlapping [13]. Sec-
ond, not fast enough. Yang et al. used Swin Transformer 
to identify pods [14]. Although the identification is rela-
tively accurate, due to the large number of parameters of 
Swin Transformer, the detection speed is very slow and it 
is difficult to detect in real-time.

Most of the object detection networks are designed for 
the COCO dataset, which has an average of 7.7 objects 
per image [15]. While the pods are very dense, the sim-
ple use of object detection networks is often not very 
accurate. In areas where pods overlap significantly, the 
texture features are significantly different from non-
overlapping areas. The complex texture features may sug-
gest that there are more obscured pods in the area. For 
object detection networks, such information is ignored 
in order to more accurately identify typical objects. The 
model may perform better if it can take advantage of the 
additional information. CLIP uses natural language to 
enhance the learning of visual concepts, greatly improv-
ing the generalization ability of the model [16]. Multi-
task learning, due to differences between tasks, can help 
the model focus on more information. A suitable auxil-
iary task can help to improve the main task [17]. Through 
multi-task learning, the model can extract additional 
information that may alleviate the obscuration of the 
pods.

YOLO (You Only Look Once) is a series of classical 
object detection models that balances speed and accu-
racy, widely used in agriculture. Tian et al. [18] combined 
the YOLO V3 model with DenseNet and proposed the 
YOLOV3-density, achieved accurate identification of 
apples at different growth stages. Yang et  al. [19] added 
a self-attentive module to YOLO V4 to improve the 
accuracy of counting wheat ears. Ge et  al. [20] made 
a series of improvements to YOLO V5s and proposed 
YOLO-Deepsort, thus tracking and counting tomatoes 
at different growth periods. YOLO X is one of the latest 
achievements of the YOLO series and it performs better 
than the previous YOLO model [21].

We propose an approach based on the YOLO X frame-
work. We modify the model into a multi-task model by 
adding a pod number prediction module and modifying 
the loss function. We have also made a series of improve-
ments to the model to improve performance without sac-
rificing speed.

Materials and methods
Pod counting datasets
To better validate the generalization ability of the model, 
we used three datasets in this study. The first dataset is 
Chongzhou dataset. The field experiment was conducted 
in 2021 at Sichuan Agricultural University Chongzhou 
Experimental Base (103.40°E, 30.39°N), with 70  cm row 
spacing and 20  cm plant spacing. These images were 
taken by Canon 700D, and the image size was 4752 × 3168 
pixels (Fig. 1a), a total of 570 images were acquired. The 
other two datasets are Renshou2021 dataset and Ren-
shou2022 dataset, and they were obtained from Ren-
shou Farm of Sichuan Agricultural University (104°08′E, 
29°59’N). Field experiments for Renshou2021 and Ren-
shou2022 datasets were conducted in 2021, 2022 respec-
tively, the row spacing is 70 cm and the plant spacing is 
20  cm. The Renshou2021 dataset was taken by Canon 
750D, and the image size was 5184 × 2916 pixels (Fig. 1b), 
a total of 878 pictures were acquired. The Renshou2022 
dataset was taken by Hikvision MV-CH250-90GC, the 
image size is 3960 × 2392 pixels (Fig.  1c), including 795 
images. All pictures were taken under natural light with 
a black light-absorbing cloth in the background. Depend-
ing on the size of the plants, the camera is 120–150 cm 
above the plant. In Additional file 1, the varieties of soy-
beans in each dataset are listed, and 5–15 pictures are 
taken for each variety.

A total of 1448 images from the Chongzhou and Ren-
shou2021 datasets were annotated with LabelImg [22], 
each pod in the images is annotated with a bounding rec-
tangle. Images from the Chongzhou dataset are used to 
train the model. Images from the Renshou2021 dataset 
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are used to evaluate the model detection effect, calculate 
the  AP50, Precision and Recall. The details of the datasets 
are given in Table 1. In addition, a total of 1673 images 
from Renshou2021 and Renshou2022 were used to evalu-
ate the accuracy of pod counting, calculating R2, MAE, 
MAPE, RMSE.

Data augmentation
To enhance the robustness of the model and prevent 
overfitting, two different data augmentation methods 
were used. 1) Randomly crop the height of the images. 
Because the soybean plants are placed horizontally, 
and most plants are elongated, so there are more back-
ground areas on the top and bottom of the image, this 

part of the background was randomly cropped to help 
the model detect small objects such as pods. 2) Mosaic 
[23] and MixUp data augmentation [24]. Randomly select 
4 images, after random scaling, mix the 4 pictures, then 
mix the mixed picture with a new picture.  The pipeline 
for data augmentation is shown in Fig. 2. 

Each iteration randomly uses one of the two data 
augmentation methods. The probabilities of random 
cropping, Mosaic, and MixUp are 0.4, 0.6, and 0.5, 
respectively.

During training, all images of the training set are iter-
ated once in each epoch, and the above random augmen-
tation is applied to each read of each image.

Fig. 1 Examples of soybean images in three different datasets

Table 1 The detail of datasets

The column “Total” represents the total number of pods in the dataset, “Average” indicates the average number of pods in one picture

Dataset name Country Location Acquisition
date

Number
of images

Image size
(Pixels)

Total Average

Chongzhou China Chongzhou, Sichuan 07/2021 570 4752 × 3168 18, 755 32.90

Renshou2021 China Renshou, Sichuan 10/2021 878 5184 × 2916 53, 895 61.38

Renshou2022 China Renshou, Sichuan 07/2022 795 3960 × 2392 – –
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YOLO POD
To achieve the full potential of our solution, we needed 
to choose an architecture suitable for detecting soy-
bean pods. YOLO (You Only Look Once) series mod-
els are highly accurate and fast. YOLO X [21] is one of 
the latest achievements of the YOLO series, featuring 
an anchor-free design. The location, size and orienta-
tion of pods are variable, so the anchor free design can 

better identify dense pods. Therefore, we chose YOLO 
X as our baseline and built on top of it.

The structure of YOLO X is shown in Fig.  3. YOLO 
X uses CSPNet [25] to extract features, PANet [26] to 
fuse features, and finally uses two sets of decoupled 
heads for classification and regression, the IoU branch 
is added on the regression branch. 

Fig. 2 Illustration of YOLO POD’s image augmentation pipeline
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Based on YOLO X, we mainly modified the YOLO 
head. We adopted three sets of decoupled heads to 
process features at different scales for classification, 
localization, and prediction of the number respectively, 
added the self-attention structure, and improved the 
loss function. In addition, we employed mixed preci-
sion training, adopted the SPPF structure.

Mixed precision
Mixed Precision Training [27] is a technique that uses 
both single precision and half-precision when training. It 
can greatly reduce memory consumption and accelerate 
the training of the model.

We use mixed precision to reduce the memory con-
sumption of the model, thus using the larger batch size 
and image size in training, and speeding up training.

Spatial pyramid pooling‑fast
SPP (Spatial Pyramid Pooling) [28] can effectively 
expand the perceptual field of the model and enhance 
the robustness of the model. However, SPP needs to 
repeat the maximum pooling four times for a feature 
map (Fig. 4a), the feature maps obtained by max-pool-
ing are not fully used, which takes up a lot of mem-
ory and runs slowly. Therefore, Jocher proposed the 

Fig. 3 Illustration of the overall structure and sub-modules of YOLO X
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SPPF (Spatial Pyramid Pooling-Fast) [29], which per-
forms maximum pooling of feature maps sequentially 
(Fig.  4b), reducing memory usage and improving run-
ning speed. We replace SPP with SPPF. 

Furthermore, we replace the Focus block with a con-
volutional layer with kernel size = 6 and stride = 2, they 
are computationally equivalent [29].

Self‑attention based YOLO head
The images we collected have less pod area and more 
background (Fig.  2), while the background does not 
help to count the pods, so to reduce the effect of the 
background and let the model focus on the pods, we 
introduced CBAM (Convolutional Block Attention 
Module) [30] in the YOLO head (Fig. 5).

CBAM is a lightweight and general module, including 
spatial attention and channel attention. The weights of 
different regions and channels are calculated by average 
pooling, max pooling, and a simple fully connected layer. 
It makes the model focus on the important information.

Number prediction module
To help the model learn information reflecting the 
number of pods, the Number Prediction Module was 
added to the YOLO head. The behavior of predicting 
numbers differs greatly from the behavior of identifica-
tion and localization, in order to avoid the prediction 

of numbers directly affecting the identification of pods, 
while enhancing the ability of the backbone to extract 
number information, as shown in Fig. 5, the Number Pre-
diction Module is decoupled from the module for clas-
sification and localization.

We think that the information reflecting the number of 
pods is more spatially relevant, so we compress the chan-
nels to 1, flatten it, and then use a fully connected layer to 
fuse the information of different scales.

The Number Prediction Module is designed to help the 
network learn additional information to improve the per-
formance of the model. It serves for training, so there is 
no need to call this module in inference, which can speed 
up the inference.

Number loss function
The output of the Number Prediction Module is the prob-
ability of different pod numbers in one image. In our case, 
the network will predict the probability that the number of 
pods is 0, 1, 2, 3 ……297, 298, 299.

For the output of the network, it is first normalized by 
Softmax to get a smoother probability distribution. The 
formula is defined as follows:

xi = Probability that i is the actual number of pods
N = 300

(1)Soft max(xi) = log

(

exp(xi)
∑N

n=1exp(xn)

)

Fig. 4 Illustration of the difference between Spatial Pyramid Pooling and the Spatial Pyramid Pooling-Fast. SPPB uses 3 pooling layers with different 
kernel-size, while SPPBF uses 3 consecutive pooling with kernel-size = 5
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For the result after Softmax, Negative Log Likelihood 
Loss is calculated. Here, the number of bounding boxes in a 
picture is used as the ground truth. Loss is defined as:

B = Batch size
wyb = 1, weight
xb,yb = predicted confidence for ground truth
The total loss is summed by the number loss and YOLO 

loss:

λnum = 0.3, λYOLO = 1.0 are hyper-params set to balance 
number loss and YOLO loss.

Model training
We use Python as the programming language, Pytorch 
[31] as the deep learning framework, and the AdamW 
optimizer. Because the YOLO X model is large, the origi-
nal YOLO X trained on NVIDIA GeForce RTX 3090, 
the improved YOLO X models with Mixed Precision are 
trained on 2080Ti.

The models used pre-trained YOLOX-L. Because 
the YOLO head was modified heavily, the training was 
divided into two stages. In the first stage, the YOLO head 
was trained, and in the second stage, the whole model 

(2)Lnum

(

x, y
)

=

∑B

b=1

−wybxb,yb
∑B

b=1wyb

(3)Ltotal = �numLnum + �YOLOLYOLO

was trained. The specific train parameters are shown in 
Table 2.

Results and discussion
Comparison with other object detection models
We compared YOLO POD with some mainstream and 
classic models, including Mask R-CNN [32], Swin Trans-
former [33], YOLO V4 [23], and YOLO V5 [29]. The 
result is shown in Table 3. Compared to YOLO X, the  R2 
of YOLO POD improved by 0.049, reaching 0.967, while 
MAE, MAPE and RMSE all decreased significantly. For 
soybean counting, YOLO POD completely outperforms 
existing models, achieving high accuracy and low error.

In addition, compared with the original Mask RCNN, 
using Swin Transformer as the backbone, the results 
were significantly improved. On many datasets, the 
best results are achieved by using Swin Transformer as 
the backbone [33], Combining YOLO POD with Swin 
Transformer might achieve a better result. However, in 
order to achieve the best results, the transformer struc-
ture requires more data than CNN [34], while the labe-
ling of dense objects like pods is expensive and difficult. 

Fig. 5 Illustration of YOLO POD’s detection head. On top of YOLO X head, we added the self-attention module and a new branch for predicting the 
number of pods

Table 2 Training parameters of YOLO POD

In Stage 1, training YOLO POD head. In Stage 2, training the entire YOLO POD

Stage Epochs Learning rate Gamma Batch size

1 5 0.001 0.92 8

2 55 0.0001 0.90 2

Table 3 Comparison of the accuracy of different object 
detection networks

All the methods are tested at 1024 × 1024 resolution. Bold text indicates the best 
results.

Models R2 MAE MAPE RMSE

Mask R-CNN 0.824 16.0 29.6% 25.0

Swin-S Mask R-CNN 0.894 10.1 18.3% 18.0

YOLO V4 0.914 11.5 23.1% 17.5

YOLOV5-L 0.921 11.1 17.8% 14.0

YOLOX-L 0.918 8.72 17.5% 14.4

YOLO POD 0.967 4.18 10.0% 6.48
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Moreover, Swin Transformer is computationally expen-
sive, which limits its deployment and application.

The results of the YOLO series models are generally 
better compared to Mask RCNN. YOLO series mod-
els are designed for the object detection task, while 
Mask RCNN is designed for the instance segmentation 
task. This suggests that for pod counting, segmentation 
is unnecessary and may affect the performance of the 
model.

Some of the detection results of the YOLO series are 
shown in Fig. 6. In Fig. 6, the green boxes represent the 
pods that were correctly detected, the red boxes repre-
sent the incorrect results, and the blue boxes represent 
the pods that were missed. As it can be seen from the 
graph, YOLO V5 has more misidentified results, and 
YOLO X has more unidentified pods. The YOLO POD 
has the least missed detection and false detection, and its 
effect is the best.

Comparison of model detection speed
In order to compare the detection speed of YOLO POD 
and other models, we tested different models on the 
Renshou 2021 and Renshou 2022 dataset, and the spe-
cific results are shown in Table 4. For YOLO POD, when 
training, the parameters is 78.6 M and the FLOPs (float-
ing point operations, used to measure the computational 

complexity of the model, the smaller the better), is 
445.8G, but in inference, the Number Prediction Mod-
ule is not used, the Parameters is 54.2  M and FLOPs is 
394.9G.

Mask R-CNN and Swin Transformer are mainly for 
instance segmentation tasks, so the model is large and 
the inference speed is slow. Among them, although the 
Swin Transformer has a good detection effect, the model 
speed is slow and the GPU requirements are high.

In the YOLO series, YOLO X is slower than YOLO V4 
and YOLO V5, mainly because of the design of the model. 
Compared to YOLO X, the parameters of YOLO POD do 
not change significantly, while FLOPs have decreased, the 
decrease in FLOPs is mainly due to the introduction of 

Fig. 6 Example of the detection results of the YOLO series on the Renshou 2021 dataset. The green boxes represent the pods that were correctly 
detected, the red boxes represent the incorrect results, and the blue box represents the missing pods

Table 4 Comparison of detection speed of different models

All the models are tested at 1024 × 1024 resolution, and batch = 1 on 2080Ti

Models Inference speed Parameters FLOPs

Mask R-CNN 15.0 s 43.8 M 499.8G

Swin-S Mask R-CNN 9.81 s 69.1 M 723.5G

YOLO V4 0.419 s 63.9 M 362.1G

YOLOV5-L 0.413 s 46.5 M 292.5G

YOLOX-L 0.454 s 54.2 M 397.8G

YOLO POD 0.462 s 54.2 M 394.9G
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SPPF, which reduces the calculation. In terms of infer-
ence speed, YOLO POD is slower than YOLO X. The 
increase time is mainly from the CBAM. But YOLO POD 
is only 0.08 s slower than YOLO X, YOLO POD greatly 
improves the accuracy of detection with a slight increase 
in inference time.

Comparison with previous works
Table 5 contains our and previous methods for counting 
soybean pods. The  AP50 is calculated with reference to 
the COCO [15]. Riera et al. [12] input three images into 
RetinaNet [35] for detection, thus estimating the number 
of pods. Yang et al. synthesized a pod dataset for training 
Swin Transformer, and use 200 real soybean plant images 
to evaluate the detection effect [14].

The correlation between the predicted and actual val-
ues of our method is much higher than that of Riera et al., 
already available for practical application in production. 
In terms of detection effect, the  AP50 of our method is 
slightly better than that of Yang et al. But considering the 

large size and slow speed of the Swin Transformer, our 
method is more valuable in practical application.

Validation of improvement measures
The heat map shows which areas of the image are mainly 
used by the model when recognizing, the more the model 
focuses on a region, the higher temperature. Figure  7 
shows examples of heat maps for different models.

As can be seen in Fig.  7b, YOLO X focuses on fewer 
areas, mainly on the intact, unobstructed pods. After 
improvements, the model identified more pods, this is 
mainly attributed to the appropriate data augmentation 
strategy and CBAM. The data augmentation provides 
more samples for the model, and the CBAM can empha-
size important features and suppress unnecessary ones 
[30], it makes the model pay more attention to the area 
with pods.

With the introduction of Number Prediction Module, 
the region of interest of the model is further expanded. 
The information of the heavily overlapping regions is also 
noticed and used by the model. In areas where the pods 
overlap heavily, the bounding boxes are close together 
and overlap each other. In the model, images are down-
sampled by 8×, 16 × and 32× some bounding boxes might 
be ignored when calculating losses. The Number Predic-
tion Module predicts the number of pods in the whole 
image based on the extracted features, without relying on 
the labeled bounding boxes, this makes the model more 
attentive to overlapping regions. Additionally, due to the 
change of the loss function, the weight of YOLO loss is 
reduced, preventing the model from overfitting.

Table 5 Comparison with other methods in pod detection and 
counting

Methods R AP50 References

RetinaNet + Multiview 
Image

0.711 - [12]

Swin transformer + Syn-
thetic Dataset

- 0.800 [14]

Ours 0.983 0.839 –

Fig. 7 Examples of heat maps of different models: a input images; b YOLO X; c YOLO POD without Number Prediction Module; d YOLO POD
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To further verify the effectiveness of the Number Pre-
diction Module, we designed a series of experiments. 
We additionally calculated Precision and Recall. Preci-
sion is the percentage of correctly identified pods among 
the prediction result, the higher the Precision means the 
higher the accuracy of the model. Recall is the percent-
age of correctly identified pods among all labeled pods, 
the larger Recall indicates the higher integrity of the seg-
mented pods. And here we calculate the  AP50 according 
to the VOC dataset [36], which is different from that in 
3.3. The results are shown in Table 6.

When the optimization objective of the Number Pre-
diction Module is a random number between 0 and 299, 
the model cannot learn any meaningful information 
through the Number Prediction Module. But the AP and 
Recall are slightly improved, the loss term brought by 
Number Prediction Module reduces the overfitting of the 
model.

When the optimization objective of the Number Pre-
diction Module is the number of pods in an image, AP 
improves by 1.43 and Recall improves by 2.13, which 
indicates that the Number Prediction Module helped 
the model to identify more pods. Furthermore, the  R2 
between the predicted number and the manually counted 
number increased by 0.0133, and the MAE, MAPE, and 
RMSE decreased by 32.2%, 27.5%, and 34.8%, respec-
tively. The information learned through the Number Pre-
diction Module effectively helps the model to improve 
the accuracy of the pod counts.

Conclusion and future work
We propose a soybean pod counting model based on 
the YOLO framework. Experimental results show that a 
suitable auxiliary task can help improve the main task. 
By improving the model structure and multi-tasking 
the design, fast and accurate counting of soybean pods 
were achieved, and the proposed model completely 
outperforms existing object detection networks. After 
harvest, simply take a picture of soybean plants with 
black background, and the YOLO POD can quickly and 
accurately estimate the number of pods. YOLO POD 
can replace manual labor, and greatly improve the effi-
ciency of breeding. Additionally, we believe that our 

state-of-the-art results can inspire other dense object 
counting tasks.

It is very convenient and efficient to use the 
unmanned vehicles to take images and then estimate 
the yield from the images. But unlike rice and wheat 
ears, soybean pods are not located at the top of the 
plant, so the number of pods cannot be estimated from 
the field images taken by the unmanned vehicles. Our 
practice is to take images indoors after harvesting soy-
beans, which limits the application of YOLO POD. 
To enable YOLO POD to be used in the field, mobile 
automatic imaging devices need to be developed in the 
future.

Another limitation of this study is the dataset. Although 
this paper collected thousands of soybean images from 
two regions, this dataset is not large and rich enough 
compared to the Global Wheat Head Dataset [37]. In the 
future, more images of soybeans from different regions 
and countries need to be collected to build a larger data-
set and enhance the generalization ability and generaliz-
ability of the model. In addition, knowledge distillation of 
the model needs to be attempted to further compress the 
model and improve the model inference speed, so that 
the model can be deployed on more devices. This would 
be a fruitful area for further work.
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Table 6 Comparison of different ways of using the Num Prediction Module

Bold text indicates the best results.

Num Prediction 
Module

target AP50 Recall Precision R2 MAE MAPE RMSE

 × - 85.98 84.44 82.34 0.9533 6.170 13.72% 9.945

√ Random 86.32 84.97 82.06 0.9594 5.271 11.12% 8.885

√ Number of pods 87.41 86.57 80.38 0.9666 4.184 10.04% 6.477
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