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Abstract 

Despite the increased efficiency of sequencing technologies and the development of reduced-representation 
sequencing (RRS) approaches allowing high-throughput sequencing (HTS) of multiplexed samples, the per-sample 
genotyping cost remains the most limiting factor in the context of large-scale studies. For example, in the context 
of genomic selection (GS), breeders need genome-wide markers to predict the breeding value of large cohorts of 
progenies, requiring the genotyping of thousands candidates. Here, we introduce 3D-GBS, an optimized GBS proce-
dure, to provide an ultra-high-throughput and ultra-low-cost genotyping solution for species with small to medium-
sized genome and illustrate its use in soybean. Using a combination of three restriction enzymes (PstI/NsiI/MspI), the 
portion of the genome that is captured was reduced fourfold (compared to a “standard” ApeKI-based protocol) while 
reducing the number of markers by only 40%. By better focusing the sequencing effort on limited set of restriction 
fragments, fourfold more samples can be genotyped at the same minimal depth of coverage. This GBS protocol also 
resulted in a lower proportion of missing data and provided a more uniform distribution of SNPs across the genome. 
Moreover, we investigated the optimal number of reads per sample needed to obtain an adequate number of mark-
ers for GS and QTL mapping (500–1000 markers per biparental cross). This optimization allows sequencing costs to 
be decreased by ~ 92% and ~ 86% for GS and QTL mapping studies, respectively, compared to previously published 
work. Overall, 3D-GBS represents a unique and affordable solution for applications requiring extremely high-through-
put genotyping where cost remains the most limiting factor.

Keywords Genotyping-by-sequencing, Ultra-high-throughput genotyping, Multiplexing, Next-generation 
sequencing, Genomic selection, Single-nucleotide polymorphism

Introduction
Genome-wide genotyping of large populations, an 
essential component in quantitative trait loci (QTL) 
mapping or genomic selection (GS) studies, is constantly 
improving to minimize the cost of genotyping per 
individual sample. The identification of large numbers 
of molecular markers has been paralleled by the 
simultaneous development of high-throughput 
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approaches such as microarray- [18] or sequencing-based 
genotyping [50]. However, new needs related to applied 
breeding programs require the development of an ultra-
high-throughput and cost-effective genotyping platform. 
SNP arrays are a popular approach (e.g. BARCSoySNP6K 
in soybean [55] and C7AIR in rice [42]) providing a 
robust genotype calling of multiple known polymorphic 
sites at the same time and across different populations 
allowing for a direct comparison of data between 
experiments, germplasm and studies [6, 26]. However, 
SNP arrays present ascertainment issues [41], an inability 
to target loci that were not included during the array 
development and need to be developed independently 
for each species and population [11]. In addition to 
these, the cost of genotyping using SNP arrays, even after 
development, is considerably higher than sequencing-
based approaches [15].

While genotyping based on whole-genome sequenc-
ing (WGS) remains expensive and sometimes unneces-
sary in the context of large-scale studies, low- (< 5X) and 
very low-depth (0.1–0.5X) sequencing approaches, such 
as skimSeq, have been designed to decrease the sequenc-
ing cost for numerous applications in both model and 
non-model species [37, 58]. However, inferring geno-
types from a random sampling of a small percentage of 
the genome is challenging because very low sequencing 
coverage often leads to inaccurate genotype calls, par-
ticularly for organisms with a high degree of paralogy and 
or heterozygosity [54]. In contrast, reduced-representa-
tion sequencing (RRS) approaches bypass this problem 
by focusing the sequencing effort on a smaller proportion 
of the genome that is constant between the genotyped 
samples (e.g., centered on the exome or on restriction 
fragments). Combined with high-throughput sequenc-
ing (HTS) of multiplexed samples, RRS approaches, 
allows for a cost-effective genotyping of millions of SNPs 
in large sets of individuals [23]. Among RRS approaches, 
genotyping-by-sequencing (GBS) is the most widely used 
method thanks to its speed, flexibility and cost-effective-
ness [21, 43, 47]. In the last decade, GBS has been widely 
applied in animals [7, 38], plants [2, 72] and fungi [31], 
where other genotyping tools (e.g., SNP arrays; [18]) 
were not adapted [8]. The attractiveness of GBS has led 
to many optimizations related to the choice of enzymes 
[52], pipeline for calling SNPs [64], improved marker 
density (double-digest GBS [69] and high-density GBS 
[65]), and improved library-preparation procedure [62]. 
Although GBS is the most cost-effective genome-wide 
genotyping approach, it can still be expensive for routine 
screening of large populations as required in breeding 
programs [45, 50, 59]. Nevertheless, GBS could be opti-
mized by focusing sequencing on a lower fraction of the 
genome allowing more samples to be multiplexed at a 

lower average sequencing coverage and thus reduce the 
sequencing cost per sample. Reducing the genome cov-
erage through reduction of sequencing coverage will cat-
egorically result in a lower number of markers, however 
the uniform distribution of these markers is crucial for 
an efficient and effective genetic study. The appropriate 
choice of restriction enzymes can also be a challenging 
point as their recognition sites (based on the size of the 
enzyme, sensitivity to methylation, and its GC content) 
are not uniformly distributed across the genomes [24, 34, 
39, 44].

The number of required reads is another determining 
factor in multiplexing and throughput. Despite the vari-
ous improvements in GBS methods, the estimation of the 
number of reads for each sample required to achieve an 
efficient genotyping needs to be determined on a case-
by-case basis [66]. An insufficient number of reads per 
sample will result in a high proportion of missing data, a 
reduced number of SNP loci at which genotypes can be 
successfully called and, possibly, an uneven distribution 
of markers across the genome [14, 25, 60]. In contrast, 
an excessive number of reads results in an inefficient 
use of the sequencing effort and therefore, unnecessarily 
increases per-sample cost [3]. Thus, finding an optimal 
number of reads per sample can also help minimize per-
sample sequencing cost.

To optimize the multiplexing capacity of GBS, a 
novel combination of three restriction enzymes, hence 
3D-GBS, was tested on soybean to reduce the initial 
number of digested DNA fragments (or sequencing cov-
erage) while producing genotypic data as relevant as 
stdGBS. The use of this new enzyme combination has 
improved the distribution of markers across the genome 
in terms of uniformity and number of gaps compared 
to stdGBS. Finally, we investigated the optimal number 
of reads per sample to further maximize multiplexing 
capacity on a single sequencing run and thereby, signifi-
cantly minimize the sequencing cost per sample. This 
approach will greatly facilitate the adoption of ultra-high-
throughput genome-wide genotyping where the per-sam-
ple cost remains a limiting factor for various applications.

Materials and methods
Biological materials
To compare the GBS [15] and 3D-GBS methods, six-
teen soybean accessions (QS4049, QS4054, QS4067, 
QS5008, QS4028, QS4043, QS5017, OAC Klondike, 
OAC Bright, Altesse, OAC Inwood, OAC Thames, 
OAC 08-18C, OAC Morris, OAC Embro and OAC 
McCall; provided by Dr. Louise O’Donoughue at 
CEROM, Quebec, QC, Canada) were used in this 
study. These accessions were selected based on the 
availability of GBS data [53]. For each accession, seeds 
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were grown in a growth chamber. Then, approximately 
100  mg of young leaf tissues were collected for DNA 
extraction. Collected leaf tissues were dried for 4 days 
using a desiccating agent (Drierite; Xenia, OH, USA) 
and then ground with metallic beads in a RETSCH 
MM 400 mixer mill (Fisher Scientific, MA, USA). 
DNA was extracted using the DNeasy Plant Mini Kit 
(Qiagen, MD, USA) according to the manufacturer’s 
protocol. DNA quantification was done with a Qubit 
fluorometer using the dsDNA HS assay kit (Thermo 
Fisher Scientific, MA, USA) and subsequently adjusted 
to 10 ng/µl for each sample.

3D‑GBS library preparation
Choice of enzymes
The restriction enzymes for 3D-GBS were selected 
based on their sensitivity to methylation and the size 
of their recognition site compared to ApeKI, a standard 
GBS protocol for soybean. ApeKI is a 5 bp-cutter with 
one ambiguous site and 80% GC content (G*CWGC). 
Here, we used following enzymes: PstI, a 6-bp cutter 
with 66% GC content (CTGCA*G), NsiI, a 6-bp cutter 
with 33% GC content (ATGCA*T), and MspI, a 4-bp 
cutter with 100% GC content (C*CGG). ApeKI and PstI 
are partially sensitive and sensitive to cytosine methyla-
tion, respectively, while NsiI and MspI are not sensitive 
to cytosine methylation.

Library preparation
3D-GBS libraries were prepared on a reduced scale 
(5  µL reaction volume) according to the NanoGBS 
protocol [62] with the three selected enzymes (PstI, 
NsiI and MspI). Briefly, a total of 10  ng of genomic 
DNA of each sample was used for digestion with the 
restriction-enzyme mix and then ligation with sample-
specific barcoded adapters. The 5’ adapters had an 
overhang compatible with the common overhang 
produced by PstI and NsiI, while the 3′ adapters 
had an overhang compatible with that produced by 
MspI. Then, individual libraries were pooled and 
a size-selection (50–350  bp) step was done using 
a BluePippin apparatus (Sage Science, MA, USA). 
PCR amplification (12 cycles), enrichment, and PCR 
clean-up were performed before quality control, 
quantification, and purity assessments of DNA libraries 
with a spectrophotometer (Nanodrop 1000, Fisher 
Scientific, MA, USA) and a Bioanalyzer 2100 (Agilent 
Technologies, CA, USA). The 3D-GBS libraries were 
then sequenced on an Ion Torrent instrument (Thermo 

Fisher Scientific, MA, USA) on Ion Proton 540 chips 
at the Genomic Analysis Platform of the Institut de 
Biologie Intégrative et des Systèmes (Université Laval, 
QC, Canada).

Data analysis
Sequencing and genotyping
Sequencing data were processed using the Fast-GBS 
v2.0 pipeline [64] and the Wm82.a2 soybean reference 
genome (Gmax_275_Wm82.a2.v1, [51]) for SNP call-
ing. For GBS and 3D-GBS analyses, variant calls were 
filtered with VCFtools [9] to remove low-quality SNPs 
(QUAL < 10 and MQ < 30), variants residing on unas-
sembled scaffolds and indels. Then, only biallelic mark-
ers with missing data < 0.8 and heterozygosity < 0.1 
were retained. This filtering step resulted in the removal 
of approximately 70% of low-quality variants from both 
GBS (25,280 to 7904) and 3D-GBS (15,082 to 4826) 
data. The following statistical analysis were performed 
using filtered data. The genome coverage (fraction of 
the genome captured) was determined with the func-
tion ‘coverage’ in Samtools [10] while the mean depth 
of coverage (sequencing coverage) was calculated using 
VCFtools with the function ‘–depth’. The proportion 
of missing data and heterozygous calls, average minor 
allele frequency and nucleotide diversity (PiPerBP) 
were estimated using TASSEL v.5 [5]. In silico diges-
tion analysis was performed using DepthFinder [66] 
to determinate the number of cutting site across the 
genome for different combinations of enzymes.

Distribution of markers on the physical and genetic maps
The distribution of markers across the physical map 
was based on the VCF files generated after Fast-GBS 
analysis and SNP filtration, using the rMVP package in 
R [70]. For genetic maps, the genetic position of each 
SNP was inferred from the closest corresponding SNP 
on the consensus genetic map based on GBS-derived 
SNP markers [16]. Then, the distribution of markers 
across the genetic maps was evaluated using the QTL 
IciMapping v4.1 software [40].

Random sampling of reads
Different subsets of reads (i.e., 50K, 100K, 200K and 
300K reads) were randomly sampled three times for 
each of the 16 accessions using seqtk [32] with the 
function ‘sample’ [32]. Then, sequencing data as well 
as the number and distribution of SNPs were assessed 
as mentioned above to compare results generated from 
each read subgroup. To investigate 3D-GBS results for 
biparental crosses, the two genetically closest and most 
distant accessions were determined by using a matrix of 
pairwise distances generated with TASSEL v.5 [49].
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Results and discussion
New enzyme combinations for an efficient and uniform 
capture of the genome
In this study, sixteen DNA samples that had been 
previously genotyped with the original ApeKI-based 
GBS protocol were used to produced 3D-GBS libraries. 
The 16-plex GBS and 3D-GBS libraires produced 
~ 21.1M (ranging from ~ 800K to ~ 2.9M reads/sample) 
and ~ 10.4M (ranging from ~ 300K to ~ 800K reads/
sample) reads, respectively. First, the distribution of 
the SNPs derived from PstI–MspI and Nsil–MspI reads 
was investigated to assess the relevance of this enzyme 
combination (Fig. 1a and Additional file 1: Fig. S1). We 
found 76.5% and 23.5% of Nsil–MspI and PstI–MspI 
reads, respectively, encompassing 4206 and 620 SNPs, 
respectively. The higher proportion of NsiI–MspI-
derived fragments and SNPs could be expected because 
of the methylation insensitivity of NsiI and lower GC 
content compared to PstI. Nevertheless, PstI–MspI-
derived fragments ensured the coverage of large gaps 
devoid of NsiI–MspI-derived fragments (e.g., on 
chromosomes 9, 11 and 20).

To perform a meaningful comparison, the same overall 
number of reads for each 16-plex library was used to 
compare the two protocols; as the number of reads per 

Fig. 1 Distribution of the GBS- and 3D-GBS-derived SNPs across the soybean genome. a Distribution of the SNPs derived from NsiI–MspI and PstI–
MspI reads on selected chromosomes. The colors of the heatmap correspond to the number of SNPs within 1-Mb windows. b Distribution of the 
SNPs derived from GBS and 3D-GBS on selected chromosomes. c Distribution of the SNPs derived from GBS and 3D-GBS libraries across the soybean 
genetic map. Chromosomes in green and blue represent GBS and 3D-GBS, respectively

Table 1 Sequencing and SNP-calling data generated from GBS 
and 3D-GBS libraries of 16 soybean samples

a Fraction of the genome captured across all 16 libraries
b Average number of read at each sequenced position
c Inferred from the closest corresponding SNP on the consensus genetic map 
[16]

Steps Measured parameters GBS 3D‑GBS

Sequencing Mean read count (M) 0.6 0.6

Coverage (%)a 4.7 1.2

Mean depth of coverage (X)b 5.1 14.5

Mean mapping quality 41 42

SNP calling SNP count 7904 4826

Proportion of missing data (%) 33.7 15.3

Proportion of heterozygous genotypes 
(%)

4.4 3.8

Average minor allele frequency (%) 33.8 31.3

Nucleotide diversity (p per bp) 0.43 0.42

Physical map SNP/Mb 8.3 5.1

Number of gaps > 5 Mb 9 6

Number of gaps > 10 Mb 1 0

Genetic map SNP/cMc 3.7 2.3

Number of gaps > 10 cM 7 10

Number of gaps > 20 cM 0 1
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accession varied, an identical number of mapped reads 
for a given accession in each of the two libraries was used 
to compare GBS and 3D-GBS (Table  1). As expected, 
with 3D-GBS, a lower fraction of the genome was 
captured compared to GBS (genome coverage of 1.2% 
vs 4.7%, respectively). As the sequencing effort (i.e., the 
number of reads per sample) was focused on a smaller 
fraction of the genome, the mean depth of coverage was 
threefold higher in 3D-GBS compared to GBS (14.5X 
vs 5.1X, respectively) resulting in a lower proportion of 
missing data (15.3% vs 33.7%, respectively). Fortunately, 
while the genome coverage was 75% lower for 3D-GBS 
than GBS data, the number of SNPs identified was only 
40% lower (4826 vs 7904 SNPs, respectively), showing 
that 3D-GBS either captures more polymorphic regions 
of the genome or improves the genotyping efficiency for 
the same sequencing effort. As expected, highly similar 
metrics were obtained for mapping quality, proportion 
of heterozygous genotypes, average minor allele 
frequency and nucleotide diversity in both datasets. This 
suggests that 3D-GBS data is as relevant as GBS data for 
performing different genetic analyses.

The density of SNPs captured by 3D-GBS (5.1 SNPs/
Mb and 2.3 SNPs/cM with no gap > 30  cM) represents 
an adequate density to perform QTL mapping and GS 
analysis. To confirm this, the distribution of the SNPs 
across the physical and genetic maps has been evaluated 
(Fig. 1b, c, Additional file 2: Fig. S2). Compared to GBS-
derived SNPs, the distribution of the 3D-GBS-derived 
SNPs was more uniform across the genome (Fig. 1b and 
Additional file 2: Fig. S2). This can be easily illustrated by 
(i) several regions > 5 Mb on chromosomes 1, 5, 6, 12, 16 
and 18 that are missed by GBS while they were covered by 
3D-GBS; and (ii) the more uniform distribution of SNPs 
which rarely exceeds 25 SNPs/Mb in 3D-GBS, compared 
to GBS where many regions are covered with an “exces-
sive” number of SNPs (25 to more than 41 SNPs/Mb; e.g. 
on chromosomes 4, 5, 6, 16, 18, etc.). Finally, regarding 
the genetic map, the 3D-GBS SNPs were well distributed 
with only one gap close to 20 cM on Chr11, in a region 
that was also poor in GBS-derived SNPs (Fig.  1c), sug-
gesting that 3D-GBS data are as efficient as GBS data to 
conduct genetic analyses such as GS or QTL mapping.

The appropriate choice of enzyme(s) is an essential 
step in developing a GBS protocol [20]. In the original 
GBS protocol [15], the ApeKI enzyme was used as fre-
quent cutter with sensitivity to methylation to obtain 
SNPs mainly distributed in gene-rich regions (hypo-
methylated fraction of the genome) corresponding to 
a coverage of ~ 4–5% of the genome (Table 1). A two-
enzyme strategy using a rare (e.g. PstI) and a frequent 
cutter (e.g. MspI) sensitive to methylation has also been 
developed to significantly reduce genome complexity 

in species with a very large genome (e.g., barley (5 Gb) 
[46]). However, this approach did not show enough 
efficiency with species with small to medium genome 
size [e.g., soybean (⁓1 Gb)] as it captured relatively few 
genomic regions [65]. Moreover, due to the palindro-
mic nature of enzyme’s restriction sites, this produces 
a bias in GC content, making the two-enzyme strategy 
using a rare cutter (none available with 50% GC con-
tent) impossible to obtain uniform distribution of frag-
ments in the context of a universal use. Indeed, since 
there is natural variation in GC content across chro-
mosomes [24, 34, 39, 44] and between species [29, 35], 
using a rare cutter with either 33% or 66% of GC will 
inevitably induce variable density of restriction frag-
ments across chromosomes and species. On the other 
hand, frequent cutters can have a 50% GC content, 
such as MspI (CCGG) or BfaI (CTAG), allowing a more 
even distribution of restriction fragments throughout 
the genome, as illustrated by Torkamaneh et  al. [65]. 
However, when they have been used alone, these fre-
quent cutters induce too many restriction fragments 
across the genome, which is contrary to the objective of 
reducing genome coverage.

In light of the above, we explored the idea of 
improving the two-enzyme approach by using a 
second rare cutter, such as NsiI [17], with a cutting 
site differing in GC content and exploiting methylation 
insensitivity to capture hypermethylated regions missed 
by PstI. The combination of NsiI with PstI and MspI 
presented a good opportunity to obtain a sufficient and 
efficient low density of SNPs distributed more evenly 
in the genome. While ApeKI would be expected to 
cut every ~ 512  bp  (44.5), here, a combination of three 
enzymes that include PstI and NsiI (two 6-bp-cutter 
with differing methylation sensitivity), with a predicted 
cutting frequency of one site every ~ 4096 bp  (46), and 
MspI, a methylation-insensitive 4-bp cutter with an 
expected cutting frequency of one site every 256 bp  (44) 
were used jointly to reduce the fraction of the genome 
that is captured. The high cutting frequency of MspI 
allows to generate more fragments of 100–400 bp [22] 
that are ideal for short-read sequencing. Together, 
these enzymes span a broad GC, 33% for NsiI, 66% 
for PstI and 100% for MspI, thus creating a suitable 
condition to reduce genome coverage and uniformly 
sample different genomic regions. Based on in silico 
digestion analysis, different combination of enzymes 
with similar cutting site criteria (size and GC content) 
could be considered to further reduce genome coverage 
(Additional file 3: Fig. S3). Finally, by focusing on fewer 
but well-distributed genomic regions, 3D-GBS offers an 
efficient and cost-effective approach for discovery and 
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genotyping of SNPs across the genome in species with 
small to medium-sized genome.

Optimizing the number of reads per sample to maximize 
multiplexing
Different numbers of reads (i.e. 50K, 100K, 200K and 
300K reads) were randomly sampled three times for each 
accession from the 16-plex 3D-GBS library. For each met-
ric investigated, the coefficient of variation between rep-
licates based on the same number of reads was < 5% [not 
significantly different (Tukey HSD test p-value > 0.1)]. For 
this reason, the mean value (across all three replicates) 
for each metric is reported in Table  2. With increasing 
the sequencing effort from 50 to 300K reads per sam-
ple, the fraction of the genome captured increased from 
0.6 to 1%, the number of SNPs increased from 1314 to 
4082, and the proportion of missing data decreased from 
37 to 20%. Even at the smallest value tested (50K reads/
sample), the proportion of missing data was still reason-
able and would allow for an accurate imputation [61]. For 
average minor allele frequency and nucleotide diversity 
values, equivalent results were provided across the entire 
range of reads per sample, suggesting that even with a 
very limited sequencing effort one can perform high-
quality genetic diversity analysis.

The distribution of the SNPs on the genetic map was 
very similar from 100 to 300K reads while, with only 50K 
reads per sample, large gaps were detected (e.g., ~ 10 cM 
on Chr01, ~ 80  cM on Chr03, ~ 60  cM on Chr06) and 
some chromosome extremities were missed (Fig.  2). 

Table 2 Variant calling using different subsets of reads derived from 3D-GBS on 16 soybean samples

a Total genome fraction captured by the 16 libraries
b Average number of read at each sequenced position
c Inferred from the closest corresponding SNP on the consensus genetic map [16]

Step Measured parameters 50K reads 100K reads 200K reads 300K reads

Sequencing Coverage (%)a 0.6 0.7 0.9 1

Mean depth of coverage (X)b 2.7 4.1 6.3 8.4

SNP calling SNP count 1,314 2,299 3,587 4,082

Proportion of missing data (%) 37.1 29.3 23.3 20.3

Proportion of heterozygous genotypes (%) 6.1 5.2 5 4.6

Average minor allele frequency (%) 27.3 27.2 26.2 25.9

Nucleotide diversity (p per bp) 0.36 0.36 0.35 0.35

Physical map SNP/Mb 1.4 2.4 3.8 4.3

Number of gaps > 5 Mb 23 9 5 7

Number of gaps > 10 Mb 6 1 1 0

Genetic map SNP/cMc 0.6 1.1 1.7 2

Number of gaps > 10 cM 29 18 12 9

Number of gaps > 20 cM 2 1 1 1

Fig. 2 Comparison between genetic maps based on different 
number of 3D-GBS reads. Genetic map in blue, green, purple and 
red were constructed based on 50K, 100K, 200K and 300K reads, 
respectively
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While the density of markers doubled between 100 
and 300K reads, the distribution of the SNPs across the 
genetic map remained very similar with some regions 
that were denser in SNPs using 300K reads (e.g., ~ 40 cM 
on Chr01, ~ 60  cM on Chr04, ~ 90  cM on Chr06). This 
very promising result suggests that one can run 3D-GBS 
with only 100K reads per sample, a significant reduction 
in the sequencing cost, to achieve sufficient resolution 
(~ 2300 SNPs, 1.1 SNP/cM) to perform GS.

In the case of mapping studies using biparental popu-
lations (i.e. QTL mapping), the number of polymorphic 
marker loci can significantly vary based on the related-
ness of parents. To ensure that the proposed number of 
reads would still offer a sufficient number of markers for 
biparental QTL mapping, we determined the number and 
distribution of SNPs between the least and most geneti-
cally distant pairs of accessions within this collection. A 
matrix of pairwise genetic distance among the 16 acces-
sions was produced and identified QS4054 and OAC 
Bright as the most genetically similar, while QS5008 and 
QS4067 proved to be the most distant (Additional file 4: 
Table  S1). The number of polymorphic markers using 
100K and 300K reads varied from 426 to 669 for the clos-
est lines and from 677 to 1325 for the most distant ones 
(Table 3). This means that for the closest lines, doubling 
or tripling the number of reads from 100K reads had 
only allowed the discovery of 32% and 36% more SNPs, 
respectively. In contrast, in the most distant lines, dou-
bling or tripling of the number of reads from 100K has 
doubled the density of markers on the genetic map. Thus, 
as similar results were obtained between 200 and 300K, 
200K reads per sample seems as suitable as 300K reads 
to perform QTL mapping in a biparental population. This 
represents a significant gain compared to current studies 
where ApeKI-based GBS protocol was used with over 1M 
reads per sample to conduct QTL mapping studies [12, 
57].

Compared to other low- (< 5X) and very low-depth 
(0.1–0.5X) sequencing approaches developed to 
reduce the cost of genotyping [37, 58], 3D-GBS can be 
considered as extremely low-depth sequencing (~ 0.01X). 
Low-depth sequencing methods suffer from genotype 
uncertainty as a limited amount of sequencing reads are 

normally used to cover the entire genome. As an example, 
1M reads (100 bp) provide a mean depth of coverage of 
0.1X of a medium size genome (e.g., soybean; 1 Gb). In 
3D-GBS, 200K reads provide a mean depth of coverage 
of 6X as the complexity reduction allows to focus the 
sequencing effort on a small proportion of the genome. 
Furthermore, 3D-GBS offers markers that are better 
distributed across the genome. Finally, here 3D-GBS 
libraries were prepared with the least expensive NGS 
library preparation procedure and its data can also be 
processed with efficient and user-friendly bioinformatic 
pipelines [62, 64].

Maximizing multiplexing to minimize the sequencing cost 
per sample
Thanks to its efficiency and low cost, the GBS approach is 
commonly used to perform genome-wide genotyping for 
a large number of species (animal [19], plant [4], insect 
[13] and microorganism [31]) and different applications 
(association studies [63] and GS [27, 48]). Nevertheless, 
the cost associated with high-throughput screening for 
genome-wide markers remains the most limiting factor 
in the context of large-scale studies such as GS, genetic 
fingerprinting and genetic diversity studies. In associa-
tion studies (GWAS), in general, the denser the catalog 
of SNPs, the higher the mapping resolution will be. How-
ever in contrast, in most of genetic studies (e.g., GS), 
linkage disequilibrium (LD) is very extensive and a low 
density SNP catalog is sufficient to capture linkage blocks 
and perform the analysis [49, 68]. Recent studies based 
on reducing the total number of SNPs by focusing on a 
subset with significant marker-trait associations [33, 56] 
or based on functional annotations [30], suggest that a 
lower-density catalog could generate prediction accu-
racies as high or better than dense catalogs (e.g., WGS-
based genotyping) [36]. This has been well illustrated for 
GS in barley, where Abed et al. [1] showed that a catalog 
of 2K GBS-SNPs provided a very similar prediction accu-
racy compared to 35K SNPs.

As documented before [62], to reduce the genotyping 
cost, one can decide to increase the multiplexing level 
by decreasing the sequencing effort per sample, which 
can, however, lead to a higher proportion of missing 

Table 3 Analysis of SNP density obtained with different number of reads for two hypothetical biparental crosses

The genetically closest and farthest accessions were QS4054 and OAC Bright and, QS5008 and QS4067, respectively

Crossing Closest accessions Farthest 
accessions

Closest accessions Farthest 
accessions

Closest accessions Farthest 
accessions

Reads per sample (K) 100 200 300

SNP count 426 677 630 1165 669 1325

SNP/1 Mb 0.5 0.7 0.7 1.2 0.7 1.4

SNP/cM 0.21 0.33 0.31 0.57 0.33 0.65
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data that need to be imputed correctly and a non-
uniform distribution of SNPs across the genome [63, 
64]. Here, using 3D-GBS, we showed that it is possible 
to produce a lower number of restriction fragments, well 
and uniformly distributed across the genome, to reduce 
the number of reads needed to provide sufficient read 
coverage to call genotypes efficiently. Here, we found that 
100K reads is sufficient to conduct GS with 3D-GBS, and 
that is significantly lower compared to previous studies 
where GBS has been used (e.g., Qin et al. [48] with ~ 3.3M 
reads/sample, Jarquín et  al. [27] with ~ 2.6M reads/
sample and Jean et  al. [28] with ~ 1.2M reads/sample). 
Similarly, we estimated the optimal number of reads per 
sample for an efficient genotyping of bi- and multi-parent 
populations. In the context of biparental populations, 
we estimated that 200K reads/sample is suitable for 
performing QTL mapping. 3D-GBS allowed a drastic 
reduction compared to equivalent studies using GBS 
where a much larger number of reads per sample were 
used (e.g., Yoon et al. [71] ~ 3.2M, Heim and Gillman [22] 
~ 2.4M, St-Amour et al. [57] ~ 1.4M, de Ronne et al. [12] 
~ 1.0M and Vuong et al. [67] ~ 843K).

To estimate the gain of 3D-GBS over the standard GBS 
approach, we selected two studies conducted internally, 
using ApeKI-based GBS protocol and with the low-
est number of reads per sample for GS [28] and QTL 
mapping [12]. In these study cases, based on the opti-
mal number of reads/sample estimated previously, with 
the same population, experimental design and goal, the 
application of 3D-GBS for GS and QTL mapping would 
have led to similar results with a significant reduction 
in per-sample sequencing cost: ~ 92% (~ 1.2M vs 100K 
reads/sample) and ~ 86% (~ 1.4M vs 200K reads/sample), 
respectively. All without taking into account the minia-
turization of sequencing libraries which alone can reduce 
library preparation costs by 67% [62]. Overall, the com-
bination of recent improvements in miniaturizing GBS 
library preparation procedure (i.e., NanoGBS [23]) and 
3D-GBS provides a unique opportunity to dramatically 
reduce per-sample genotyping costs.

Conclusion
Recent advances in NGS technologies have enabled the 
massively parallel processing of hundreds of samples 
efficiently and cost-effectively, a prerequisite for genetic 
studies such as QTL mapping and GS. However, it still 
remains costly in the context of large-scale studies such 
as GS, as breeding programs typically produce many 
thousands of selection candidates each year. In the con-
tinuous objective of reducing the genotyping cost for sci-
entific research and applied needs, 3D-GBS enables us to 
maximize the multiplexing capacity needed to achieve 

the ultra-high throughput that is needed in a wide range 
of applications and thus decreasing the sequencing cost 
per sample. While we demonstrated the efficiency of 
3D-GBS using soybean samples, this method could eas-
ily be used across a wide range of species with small to 
medium genome size.
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