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Abstract
Background  Rust is a damaging disease affecting vital crops, including pea, and identifying highly resistant 
genotypes remains a challenge. Accurate measurement of infection levels in large germplasm collections is crucial 
for finding new resistance sources. Current evaluation methods rely on visual estimation of disease severity and 
infection type under field or controlled conditions. While they identify some resistance sources, they are error-prone 
and time-consuming. An image analysis system proves useful, providing an easy-to-use and affordable way to quickly 
count and measure rust-induced pustules on pea samples. This study aimed to develop an automated image analysis 
pipeline for accurately calculating rust disease progression parameters under controlled conditions, ensuring reliable 
data collection.

Results  A highly efficient and automatic image-based method for assessing rust disease in pea leaves was 
developed using R. The method’s optimization and validation involved testing different segmentation indices and 
image resolutions on 600 pea leaflets with rust symptoms. The approach allows automatic estimation of parameters 
like pustule number, pustule size, leaf area, and percentage of pustule coverage. It reconstructs time series data for 
each leaf and integrates daily estimates into disease progression parameters, including latency period and area under 
the disease progression curve. Significant variation in disease responses was observed between genotypes using 
both visual ratings and image-based analysis. Among assessed segmentation indices, the Normalized Green Red 
Difference Index (NGRDI) proved fastest, analysing 600 leaflets at 60% resolution in 62 s with parallel processing. Lin’s 
concordance correlation coefficient between image-based and visual pustule counting showed over 0.98 accuracy 
at full resolution. While lower resolution slightly reduced accuracy, differences were statistically insignificant for most 
disease progression parameters, significantly reducing processing time and storage space. NGRDI was optimal at all 
time points, providing highly accurate estimations with minimal accumulated error.

Conclusions  A new image-based method for monitoring pea rust disease in detached leaves, using RGB spectral 
indices segmentation and pixel value thresholding, improves resolution and precision. It rapidly analyses hundreds of 
images with accuracy comparable to visual methods and higher than other image-based approaches. This method 
evaluates rust progression in pea, eliminating rater-induced errors from traditional methods. Implementing this 
approach to evaluate large germplasm collections will improve our understanding of plant-pathogen interactions 
and aid future breeding for novel pea cultivars with increased rust resistance.
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Background
Rusts are a group of plant diseases caused by species of 
the Pucciniales order which is one of the largest orders 
of plant fungal pathogens comprising more than 8,000 
species [1]. They are obligate biotrophs that compromise 
yields of important crops worldwide and exhibit complex 
lifecycles with up to five different stages (i.e., pycnidial, 
aecial, uredial, telial, and basidial stages) [2]. Rust life-
cycle begins when the spores, carried by wind or water, 
germinate and infect the aerial tissue of the host. Once 
inside the plant, it produces specialized structures called 
haustoria mother cells, which penetrate the plant cells 
via a neckband, and form haustoria to extract nutrients. 
Then, the fungus produces secondary spores, which can 
spread to other parts of the same plant or to new host 
plants. This infection cycle and spore production can be 
repeated several times along the cropping season, lead-
ing to the development of visible symptoms such as yel-
lowing, spotting or rust-coloured pustules on the leaves, 
stems, or fruit of the host, depending on the rust species 
or host reaction [2, 3]. In many cases two taxonomi-
cally unrelated hosts are required to complete the life 
cycle. Different species of rust fungi have different host 
ranges, but many can infect a wide variety of plant spe-
cies within a particular plant family or group, hindering 
their management in the field [4]. In pea (Pisum sativum 
L.), a valuable, versatile, and inexpensive protein source 
for human food and animal feed [5], rust is a major dis-
ease spread worldwide [6]. Two rust species, Uromyces 
pisi (Pers.) (Wint.) and U. viciae-fabae (Pers. de Bary) 
[7], have been described as causal agent of pea rust. 
The uredial stage of U. pisi produces the infective struc-
tures that affects pea crops in temperate regions while 
in warmest countries the aecial stage of U. viciae-fabae 
is the epidemic one [8]. Although agronomical practices 
and chemical control of pea rusts have been explored to 
reduce their incidence [9–15], the use of resistant culti-
vars is considered as the most effective, economic, and 
eco-friendly strategy for rust control [16]. To face the 
challenge of developing new rust resistant varieties, the 
reference genomes recently available provide important 
resources for pea breeding [17–20]. The constant reduc-
tion in sequencing cost coupled with the technological 
advances that refine marker-trait association and genome 
editing approaches are expected to boost future develop-
ment of pea resistance breeding. However, these meth-
ods need to be fed with detailed and accurate phenotypic 
data to guide breeding and deepen our understanding of 
the genetic variations controlling complex traits, such as 
rust disease resistance. Phenotyping is therefore becom-
ing the main bottleneck for breeding. It is particularly 
challenging when assessment of very large collection of 
several thousand lines which is the typical size of nested 
association mapping (NAM) populations [21–23]. It is 

therefore urgent to improve and optimize the available 
methods of phenotyping.

The phenotypic characterization of pea response to 
rust has relied on disease assays conducted under con-
trolled or field condition, in seedlings or adult plants, 
and with natural or artificial infestation. In these assays, 
disease was evaluated by measuring qualitative and/or 
quantitative measurements. Qualitative assessment of 
rust disease, known as infection type (IT) usually use a 
scale ranging from 0 to 4, as described by Stakman et al. 
in wheat [24]. The IT depends on the host reaction to the 
pathogen. This reaction could be incompatible, when the 
host shows no symptoms or develops a hypersensitive 
response, or compatible when typical rust pustule devel-
ops on the susceptible host [4]. Quantitative assessment 
of rust symptoms is conventionally assessed as a visual 
estimation of the percentage of leaf area covered by rust 
pustules (disease severity, DS). This can be decomposed 
in more detailed components such as the infection fre-
quency (IF) and colony size (CS). IF is the number of 
lesions (herein, pustules) within a limited area, usually 
1 cm2. These parameters defined as objective are weakly 
affected by user bias but highly time consuming when 
screening large germplasm collections. Contrary to IF or 
CS, DS is a subjective parameter highly dependent on the 
user interpretation that requires specialized training [25]. 
DS is also affected by IT, so the user can confound the 
area surrounding pustules that sometimes develop chlo-
rotic/necrotic regions. In several foliar diseases, standard 
area diagrams (SAD) can offer increased precision over 
DS calculations [26–28]. However, SAD are not readily 
available for pea rust.

Traditionally, qualitative, and quantitative measure-
ments have been performed to better understand the 
resistance mechanisms that operate in pea-rust patho-
system, together with other ones considering the pustule 
size [29–31]. Periodical evaluation of these quantitative 
parameters allows to estimate disease progression fac-
tors such as the Area Under Disease Progress Curve 
(AUDPC), the Latency Period (LP50) and the Monocyclic 
Disease Progress rate (MDPr) [32, 33]. Through these 
factors, it is possible to capture most of the complexity of 
rust disease evolution.

Little advances have been achieved toward automatiza-
tion of pea rust phenotyping in comparison with other 
aerial fungal pathosystems, for which many platforms 
and methodologies have been developed to increase 
accuracy and precision of disease estimation including 
from other fungal pathogens in legumes [34] to bacterial 
pathogens in citrus plants [35, 36]. Among these so-called 
high-throughput methods, development of image-based 
phenotyping techniques has largely increased in the last 
decade partly thanks to the decrease in imaging tech-
nologies cost and the increase in computing power [37] 
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that contributed to make them more affordable and 
accurate. These approaches take advantage of the clear 
contrast between the lesion emerging on the leaf sur-
face and the healthy leaf background. These methods, 
through the application of appropriate threshold, isolate 
lesions from coloured images (in CMYK, RGB, CIELAB, 
or HSV format) of the infected leaf to count their num-
ber and size in pixel. Some systems using RGB images 
are already available to evaluate leaf rust disease in other 
rust pathosystems, such oat leaf rust (Puccinia coronata 
f. sp. avenae Fraser & Led.) in oat (Avena sativa L.) [38]. 
More complex methods using multi- and hyperspectral 
sensors that collect information outside the visible light 
spectrum have also been developed to quantify disease 
severity in various pathosystem including soybean rust, 
wheat leaf rust, and wheat steam rust [39–41]. In par-
ticular, it has been applied to quantify leaf rust (Puccinia 
triticina Eriks.) diseases under controlled conditions in 
wheat (Triticum aestivum L.) through vegetation indices 
[40] and their application in the field have already been 
explored using unmanned aerial vehicles (UAV) [42]. 
However, there are currently no high-throughput image-
based method that can be used to estimate rust disease 
evolution during the complete cycle and to estimate dis-
ease progression parameters, particularly in pea.

The growing interest in image-based disease phenotyp-
ing has driven the development of various image analysis 
platforms. Particularly promising are the platforms based 
on free and open-source environments that align with 
the principles of open science, with Python language 
being a notable example. Python’s versatility and ease of 
use have made it a popular choice for various scientific 
disciplines, including plant disease phenotyping trough 
packages such as PlantCV [43, 44]. In parallel, the R 
language, known for its extensive use in statistical com-
puting and graphics, is also gaining traction in the field 
of plant phenotyping. Researchers are increasingly rec-
ognizing the capabilities of R for handling and analysing 
complex datasets, making it a valuable tool for studying 
plant diseases [45–47].

This study aimed to develop an image processing work-
flow using R software that achieves several goals, includ-
ing producing reliable and repeatable measurements of 
rust-infected pea leaf area, counting the number of pus-
tules, and measuring them on the leaf surface, combining 
leaf information over time to track disease progression, 
automating the process to analyse thousands of images, 
and allowing for data tracking from image acquisition to 
output.

Results
Pea rust monitoring
The developed R script enables the tracking of rust pro-
gression through image analysis, as shown in Fig. 1A. The 

method allows the accurate detection of the pustules and 
the storage of the results in a readily usable data frame 
for further calculation. The evaluation of 33 diverse pea 
genotypes randomly selected revealed their variability 
in response to rust infection caused by U. pisi. A moder-
ate variation was detected in disease severity (DS) which 
ranged from 1 to 14%. The average pustule size (PS) also 
exhibited variability between 0.3 and 1.0 mm², reflecting 
the presence of some resistance mechanism reducing the 
rust pustules size in some genotypes. As expected, a more 
pronounced variability was detected for the infection fre-
quency (IF) that ranged from 10 to 82 pustules per cm² at 
13 days after inoculation (dai) (Fig. 1B). Monitoring the 
evolution of these disease parameters over time showed a 
steady increase of DS and PS throughout the experiment 
(Fig.  1B), although the increment rate varies according 
to the genotype. IF also increment over time although 
in this case the increment follows an exponential evolu-
tion with a slow increase from 8 to 9 dai followed by a 
rapid increase from 9 to 11 dai and thereafter a saturation 
plateau (Fig.  1B). As for DS and PS, the increment rate 
of the different IF phase varied according to the geno-
types. Integration of these daily disease estimates from 
8 to 13 dai allowed the calculation of AUDPC, LP50, and 
MDPr progression parameters which capture most of 
the complexity of rust resistance and facilitate the selec-
tion and discrimination of genotypes (Additional file 1). 
As expected, the susceptible genotypes GEN261 exhib-
ited the highest AUDPC and MDPr values and one of 
the shortest latency periods (LP50), while the susceptible 
GEN62 displayed the lowest AUDPC and MDPr val-
ues and the longest LP50, as expected (Additional file 1). 
These progression parameters, combined with daily point 
resistance mechanisms (IF, DS, and PS), enable a more 
precise estimation of the resistance or susceptibility lev-
els of the pea genotypes to the pathogen. Similar results 
were obtained with the visual counting. Accordingly, 
these results showcase the potential of the image-based 
method to accurately assess rust disease progression in 
pea leaves and its capability to discriminate between gen-
otypes based on their disease severity and pustule size 
variations.

Processing Time optimization and RGB segmentation 
selection
To validate the method and select the optimal criterion, a 
set of 100 leaflets x 6 time-points images were randomly 
selected. The 600 pea samples affected by rust symptoms 
were analysed following a parallel or sequential batch 
processing approach to detect the fastest one. In all cases, 
parallel strategy was five time faster than sequential strat-
egy on average (Additional file 3). Only small processing 
time differences was detected with the parallel strategy 
between segmentation index independently of the image 
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Fig. 1  Pea rust evolution assessed with the RGB-based method. (A) The images show the evolution of rust pustule development at three different days 
after inoculation (8 dai, 10 dai, and 12 dai) on a representative leaflet of three differential genotypes (GEN62, GEN56, and GEN261) covering the wide 
range of susceptibility detected in the collection. White spots on the images indicate rust pustules detected by the image-based analysis methods. (B) 
Line plots showing the progression of disease severity (DS), pustule size (PS) and infection frequency (IF) over time estimated from these genotypes with 
the RGB-based method
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resolution (Fig.  2). In most cases NGRDI (Normalized 
Green Red Difference Index) tend to be faster than the 
other segmentation index although the difference was 
only statistically significant with images at 60% resolu-
tion. At this resolution the analysis of the 600 leaflets 
with the NGRDI index took 62 s.

Clear differences in processing time were observed 
between compression levels. The processing time 
required to analyse a single leaflet image varied from an 
average of 65.7 ms at 40% resolution to 274 ms at full 
resolution (Table  1). Therefore, reducing the image res-
olution allowed decreasing processing time from up to 
76% at 40% resolution (Table 1). The image compression 
also allowed reducing storage space required in the ROM 
memory. The average input image size in megabytes (Mb) 
varied from 3.5 to 1.0 between full resolution to 40% 
resolution, respectively, resulting in a store saving of up 
to 71% at maximum compression in comparison to full 
resolution (Table 1).

To select the most appropriate compression level with-
out compromising accuracy of rust pustule estimation, 
concordance correlation coefficient (ccc) using a resa-
mpling approach were evaluated between visual pustule 
counting and image-based analysis. As expected, the 
averaged indices ccc and RMSE varied largely depend-
ing on the compression level. As expected, accuracy for 
all traits was proportional to the image compression 
level (Fig. 3A) while RMSE was inversely proportional to 

image compression level (Fig. 3B). The highest accuracies 
and lowest RMSE were always obtained at full resolu-
tion. However, the accuracies and RMSE obtained for all 
traits at 80% resolution were not statistically different to 
the full resolution (Fig. 3). At these resolutions, the accu-
racy of AUDPC and MDPr estimates ranged from 0.952 
to 0.962 for AUDPC and from 0.918 to 0.922 for MDPr. 
LP50 was more difficult to estimates with accuracies vary-
ing from 0.811 to 0.852. Increasing the compression level 
reduced accuracy and increased RMSE although accu-
racies of AUDPC and MDPr estimations at 60% resolu-
tion was still higher than 0.9 (ρc = 0.918 and ρc = 0.901 for 
AUDPC and MDPr, respectively) (Fig. 3).

Significant differences in accuracy and RMSE were 
also detected between segmentation index for all esti-
mated disease parameters (Figs.  4 and 5). In all cases, 
the NGRDI index was the best index accumulating sig-
nificantly less error and providing a significantly higher 
accuracy while a* chrominance from LAB colour space 
and GLAI (Green Leaf Area Index) were the worst. The 
average accuracies of NGRDI were 0.975, 0.945, and 
0.957 for AUDPC, LP50, and MDPr, respectively. The 
average accuracy of HI (Primary Colours Hue Index) was 
also higher than 0.9 in all cases, suggesting that this index 
also provided suitable rust estimation, may be useful to 
analyse leaves from other species.

Variations were also detected in the estimation capac-
ity of each model over time. Indeed, accuracy and RMSE 
obtained from the estimations obtained from the differ-
ent indices were more variable at 8 and 9 dai then at later 
stages (Fig.  5). In general, accuracy increase while time 
advances and RMSE decrease. NGRDI was the only index 
which gave accuracies higher than 0.9 for all time points, 
reaching an accuracy of 0.98 at 11 dai. Although accuracy 
of HI was slightly lower, the estimation capacity of HI 
was still acceptable (Fig. 5).

Table 1  Effect of image compression over processing time and 
image size
Resolution Time by

leaflet 
(ms)

Input 
Image
size (Mb)

Speed in-
crease vs.
full resolution 
(%)

ROM sav-
ing vs.
full reso-
lution (%)

full (3024 px) 274 3.5 - -
80% (2419 px) 178 3.1 35 11
60% (1814 px) 106 2.0 61 43
40% (1210 px) 65.7 1.0 76 71

Fig. 2  Boxplots showing the effect of image compression on processing time per leaflet by index applied to segment the pustules from healthy tissue. 
Different letters above the box indicate the statistical differences between indices for each image resolution estimated by Tukey HSD test at p = 0.05 for 
n = 600
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Discussion
In recent years, advancements in image analysis soft-
ware and computing power have enabled the use of 
high-throughput methods for plant disease phenotyp-
ing. These methods are nowadays used to analyse plant 
diseases at different architecture levels, including stems, 
leaves, and roots [37]. Remote sensing techniques are 
playing a major role in modern breeding programs, pro-
viding accurate and high-resolution methods for identify-
ing and quantifying novel natural variations within crops 
[48–50]. This present study describes a new method for 
the automatic assessment of daily rust disease parameters 
from RGB images and their integration into rust disease 
progression parameters fastening both disease ratings 
and phenotype data analysis. The method, developed on 
the R programming environment, counts, measures, and 
reports the damage caused by rust on pea leaflets. More-
over, when images are provided in a temporal sequence, 
the method can accurately integrate the damage into the 
most common disease progression parameters and report 
them by genotype in a ready-to-use data frame. Overall, 
the image-based method proposed here to analyse rust 
disease progression in pea provides breeders with a pow-
erful tool to improve the efficiency and effectiveness of 

their breeding programs. It enables the rapid and accu-
rate screening of large germplasm collections against 
rust, which will facilitate the future development of pea 
cultivars with high level of rust resistance. Although not 
tested, the method proposed should be easily applied to 
evaluate rust in other plant species.

Automatization of pea rust progress monitoring
Traditional image-based methods for evaluating plant 
aerial diseases have been destructive and do not allow 
comprehensive disease tracking. The proposed method 
enables the periodic evaluation of several disease param-
eters throughout the first cycle of rust disease on the 
same sample and to integrated them into disease pro-
gression parameters (AUPDC, MDPr and LP50) pro-
viding a comprehensive analysis of the pea genotype 
response to rust. This approach is an adaptation of pre-
viously designed detached leaf assay used to assess other 
foliar diseases such as powdery mildew in legumes [51] 
and cereals [52] which enable the preservation of viable 
leaflet simples throughout the first cycle of rust disease 
and ensure standardize condition for image acquisition. 
One of the key advantages of the proposed method is the 
improved efficiency in data collection. The image analysis 

Fig. 3  Boxplots showing the effect of image compression in the precision of comparison, by accuracy (A) and RMSE (B), between visual calculation and 
image-based calculation on LP50, MDPr and AUDPC. Different letters above the boxes indicate statistically significant differences at p = 0.05 according to 
the Tukey HSD test for n = 600
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workflow (Additional file 2) allows for disease monitoring 
and captures maximum information regarding disease 
progression in an automatic process, which, as far as we 
know, could not be achieved by the previously developed 
methods [38, 50, 53, 54]. Here, estimation of the daily 
resistance components (IF, DS, and PS) for each leaflet 
allows the calculation of disease progression parameters 
such as AUDPC, LP50, and MDPr for each genotype. 
Application of this method was suitable to discriminate 
between genotypes and identify pea genotypes with 
high partial resistance such as GEN62 (Fig. 1) providing 
seminal works for the implementation of this method 
to evaluate large pea collection. The fast, accurate and 
comprehensive information gathered by this method 
is crucial for future breeding efforts of pea with higher 
resistance to rust [6].

Very few image-based analysis methods tackle tempo-
ral analysis of fungal infection in plants [55, 56]. Beside 

some studies in different Arabidopsis thaliana (L.) patho-
systems [55], Only one study targeted rust and com-
pared rust disease progression parameters estimated by 
image analysis in R or visual rating [57]. This study that 
counted rust pustules on ryegrass leaves with the “EBIm-
age” R package allowed to estimate AUDPC with an accu-
racy of 0.77 which is lower than the accuracy we obtain 
in pea with the present method (ρc = 0.975). In addition, 
by contrast with all previous method, calculation of dis-
ease progression parameters is integrated in the R script, 
resulting in an automated process that incorporates all 
quantitative assessments obtained through RGB image 
analysis that will help researchers to better understand 
disease progression and resistance mechanisms in aerial 
diseases.

Fig. 4  Bar plots showing the effect of the different indices on accuracy (A) and RMSE (B) when visual method and image-based method are compared by 
each parameter studied from images at 60% of the full resolution. Different letters above the boxes indicate statistically significant differences at p = 0.05 
according to the Tukey HSD test for n = 600
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Processing time optimization
Image-based disease assessments face the challenge of 
balancing storage capacity, processing time, and accu-
racy. The present R-based approach is based on the “pli-
man” package functions. This package, recently launched 
by Olivoto et al., is specifically designed for plant disease 
image phenotyping [47]. It is a promising tool faster than 
other software such as the widely used license-based APS 
Assess 2.0 software or the LeafDoctor free-app, while 
still maintaining high levels of accuracy [58]. The pro-
cessing speed of the R package “pliman” has been con-
siderably increased compared to the first stable version 
available on CRAN (v 1.0.0). For example, the process-
ing time required to analyse one image of ~ 3 mega-pix-
els (1367 × 2160) with only one leaflet was previously 
reported as ~ 1 and 3  s, for a parallel and sequential 
strategy, respectively [58]. Considering the average time 
to process one Petri dish (~ 900 ms) with 9 leaves using 
an image of ~ 3.3 mega-pixels (1814 × 1814), we have 
shown that the processing time per leaflet is almost nine 
time faster. The greater speed observed here is attrib-
uted to recent improvements of the packages that now 
use C + + language for the most critical functions [59] 
which offers faster computation speeds compared to 
other languages such as JavaScript or Python [60]. The 
potential of “pliman” to quantify disease severities was 
initially explored on infected Populus spp. leaves, and it 
was found to be faster and more efficient than manual 

analyses with ImageJ software to estimate necrotic area 
percentages [61]. However no previous studies used “pli-
man” to assess rust disease.

The present method can analyse 100 pea samples in 
27.4 segs at full resolution, or in 10.6 segs at 60% reso-
lution, provide estimates with accuracies higher than 
0.91 at all time-points. This is a significant improvement 
compared to the previously developed RUST software 
developed on Image-J that took 20 to 80 min to estimate 
IF on 100 oat samples in automatic and semi-automatic 
mode, respectively [38] [62]. Additional methods using 
free or licensed image-based analysis software are able 
to predict rust IF with good accuracy. Although not all 
studies reported processing time. The present method 
appears, as far as we know, 100 to 200 times faster than 
previously existing method to quantifying rust IF. In 
addition, these previous methods did not allow estima-
tion of disease progression parameters such as AUDPC 
while they are automatically estimated by the present 
method within the processing time. In others pathosys-
tems, incorporation of additional colour space trans-
formations or implementation of machine learning tool 
was shown to improve lesion segmentation and accuracy 
however each additional step increased processing time. 
For example, McDonald et al. proposed an automated 
method for measuring soybean [Glycine max (L.) Merr] 
frogeye leaf spot that involves converting RGB images 
to HSB (hue, saturation, brightness) and then to LAB 

Fig. 5  Bar plots showing the effect of the different indices on accuracy (A) and RMSE (B) when visual method and image-based method are compared 
for each parameter studied at 60% resolution. Different letters above the boxes indicate statistically significant differences at p = 0.05 according to the 
Tukey HSD test for n = 600
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(lightness, a* chrominance, b* chrominance) to remove 
the background and isolate the lesion [34]. While the 
method was highly accurate, reaching accuracy of 0.99 
it took 16.7  min to analyse 100 leaf samples. Although, 
this method was slightly more accurate, it was around 
100 times slower than the method proposed here. Imple-
mentation of machine learning to segment and quantify 
cassava (Manihot esculenta Crantz) bacterial blight dis-
ease severity also improved accuracy but takes 250 min 
to analyse 100 cassava leaves due to higher computer 
requirements [63]. The method proposed here is simpler 
and more cost-effective allowing the comprehensive fast 
analysis of pea rust disease without compromising accu-
racy. It is based on RGB spectral indices segmentations 
discussed by Alves et al. [54]. These authors also coincide 
in the use of NGRDI and HI as the optimal one for foliar 
diseases segmentations when compared to others [54].

The high accuracy provided for all disease parame-
ters compared with the present method coupled with it 
unprecedent speed which should be even more reduced 
by reducing image resolution to 60% if needed allow it is 
implementation to evaluate large collections. It could be 
the method of choice for the evaluation of NAM popu-
lation, typically comprising several thousand genotypes 
[21, 23] that cannot be evaluated by current rust evalua-
tion methods.

Rust resistance mechanisms estimations through RGB 
images
The proposed RGB image-based method in controlled 
conditions showed high accuracies (ρc) exceeding 0.9, 
and in most stages of the disease cycle. This method 
requires neither a large budget nor specific training, mak-
ing it a cost-effective and feasible option for phenotyping 
rust in pea and other crops. In contrast to other complex 
techniques like multi- or hyperspectral imaging, which 
have also proven useful in rust phenotyping in differ-
ent rust pathosystems [64, 65], our approach stands out 
as a more accessible and user-friendly alternative. The 
acquisition of these sophisticated phenotyping platforms 
can be prohibitively expensive and demands specialized 
training, limiting their widespread application [66].

Traditionally, DS is the measure used to assess the 
extent of damage caused by plant diseases, especially 
those affecting the aerial parts [54]. The colour thresh-
olding method used in this study is considered the most 
reliable method to accurately determine DS in phytopa-
thometry [67]. To automate DS assessment, the capacity 
to accurately predict DS of several free open-source or 
licensed software have been explored [36, 68–70]. In the 
context of the R environment, Mattos et al. [57] devel-
oped models that indirectly determined the percentage of 
injured area from images of septoria leaf spot in toma-
toes (Solanum lycopersicum L.), achieving accuracies 

of 0.925 and 0.98 for the percentage of necrotic area 
and the necrotic plus chlorotic area, respectively. These 
accuracies are similar to the accuracies obtained with 
the present method, but the method proposed by Mat-
tos et al. required to manually delimit the injured area 
using an image software (GIMP) which is not require for 
our method. Previous study on crown and stem rust in 
perennial ryegrass (Lolium perenne L.), using the “EBIm-
age” R package predicted crown rust with similar accu-
racy (0.93) but only allow evaluation of from single-leaf 
samples at a single time point and it was around 10 time 
slower [56].

Despite being widely used, visual DS estimations can be 
imprecise and biased for diseases with small and numer-
ous lesions like rust [25]. Therefore, researchers usually 
also analyse IF and/or PS that are less prone to user bias 
to quantify more precisely partial resistance in pea [71]. 
Some previous studies reported the estimation of some 
of these disease components through RGB image analysis 
with variable efficiency [38, 62, 72, 73].

For instance, the widely used license based Assess 2.0 
software seems efficient to estimate rust PS in wheat 
[72] although its accuracy to estimate IF was more lim-
ited as shown by a study on maize (Zea mays L.) leaves 
(R2 = 0.49) [73]. By contrast, highly accurate estimation of 
rust IF in oat was obtained with the license-based Image 
Pro or the free ImageJ softwares that reported accuracies 
of 0.97 in pustules counting but with image resolution 
doubling the image resolution required by the pres-
ent method [38][62]. Heineck et al. also estimate IF in 
their methodology of crown and stem rust in perennial 
ryegrass images, although the reported accuracies were 
lower reaching 0.77 and 0.84 respectively [56].

Moreover, our image-based approach provides a more 
detailed and precise characterization of rust disease 
resistance mechanisms and its progression. Traditional 
methods may suffer from subjectivity and limitations in 
capturing subtle variations in rust disease development. 
In contrast, our method captures the high complexity of 
rust disease by analysing daily symptoms and integrating 
them into disease progression parameters, allowing for a 
more comprehensive understanding of the plant-patho-
gen interaction.

Conclusions
Accurate and detailed information on the phenotype of 
rust disease in pea crop is crucial to develop new culti-
vars with improved genetic resistance. The proposed 
method for image-based rust phenotyping uses RGB 
spectral indices segmentation and pixel value threshold-
ing to separate important features from the image, such 
as the leaf and pustule lesions if present. This enables 
the measurement of disease severity by calculating the 
percentage of the leaflet area affected and counting the 
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number of pustules on a leaflet. With minimal computa-
tional requirements, the program can analyse hundreds 
of images in seconds and has accuracy comparable to 
visual methods. The proposed method is significantly 
faster than previously developed image-based workflows 
for plant disease phenotyping without compromising 
accuracy. In addition, this is the first methods that allow 
to capture most of the complexity of rust disease in pea 
by assessing daily DS, IF and PS and integrating them 
into three disease progression parameters through an 
automated process. Being developed as an R script, the 
proposed method can also easily adjust to evaluate rust in 
other pathosystems where these detailed measurements 
are necessary to comprehend partial disease resistance. 
In addition, the application of image processing allevi-
ates the raters bias that can be introduce in traditional 
methods, making it a convenient and precise approach to 
gather data on rust disease symptoms. As a results, appli-
cation of the proposed method can have implications for 
both basic research and plant breeding, paving the way 
for more effective disease management strategies and the 
development of pea varieties with higher resistance in the 
future.

Methods
Plant materials, Pathogen isolate and Inoculation
The plant material used in the image analysis to set up 
and validate our method was a randomly selected sub-
set of 33 accessions from a pea core collection of 320 
genotypes which previously reported to show a wide 
variability of responses to rust caused by Uromyces pisi 
[74]. Disease assays were performed at seedling stage 

under controlled conditions. The experiment followed a 
randomized complete block design with three biological 
replicates being planted at a time, using pea cv. Messire 
as a high-susceptible rust control, meaning a total of 100 
experimental units. Seeds of each accession were surface-
sterilized, scarified and vernalized to ensure optimal ger-
mination. Three germinated seeds per accession were 
sown in a sand:peat mixture (1:1, w/w) in a 15 cm2 plas-
tic pot. At 7 days post germination, plants were thinned 
to one plant per pot to maximize light distribution. The 
growth chamber was maintained at 20 ºC with a photo-
period of 14 h of light and 10 h of darkness and 148 µmol 
m− 2  s− 1 of irradiance at plant canopy level. Once the 
third leaf of each plant was fully expanded, plants were 
inoculated with freshly collected urediospores of the 
highly virulent isolate UpKeS-05 of U. pisi [7] previously 
multiplied on cv. Messire seedlings. Inoculation was per-
formed by dusting the plants with 1 mg urediospores per 
pot, mixed in pure talc (1:10, v:v) and the infected plants 
were incubated for 24  h at 20 ºC in complete darkness 
and 100% relative humidity as previously described [75]. 
Then, plants were transferred back to the growth cham-
ber. Pustules associated with rust symptoms started to 
emerge on pea plants eight days after inoculation (dai).

Image Acquisition
In order to cover the first rust disease cycle that goes 
from 8 to 13 dai, a leaflet from the third leaf of each plant 
(n = 100) was cut at 7 dai and transferred to square Petri 
dishes filled with water:agar (0.5%) media and 0.005% 
Benzimidazole as fungicide with nine leaflets per Petri 
dish (Fig. 6). Petri dishes were maintained in the growth 
chamber until the end of the experiment. RGB images 
of the whole Petri dishes were then acquired daily from 
8 to 13 dai, with a smartphone brand Xiaomi, carrying a 
Sony IMX363 Exmor RS Sensor with a focal ratio ƒ/ 1.9 
with a 12-megapixel resolution. To ensure homogeneity 
of the RBG images, the smartphone was set on a tripod 
0.35 m above the Petri dish and images were acquired on 
a plain black background under fluorescent light tubes 
set at 35º angles on both side of the plate. White balance, 
shutter speed, aperture and ISO speed of the camera was 
adjusted according to default parameters without flash. 
Each Petri dish was opened before image acquisition to 
avoid light reflection and closed thereafter to prevent 
contaminations (Fig.  6). Daily RGB images were saved 
in .jpg format with an original resolution of 3024 × 3024 
pixels.

Disease assessments
Infection frequency (IF) was estimated by counting the 
number of rust pustules emerging daily on each leaflet 
from 8 to 13 dai, visually or through the image analy-
sis procedure. The resulting daily counting were then 

Fig. 6  Example of a stored RGB image. The image represents a typical 
Petri dish containing nine inoculated pea leaflets and their labels. Each 
row contains the same genotype, and the columns are their biological 
replicates. The example shows the genotypes 302, 301, and 280 at 8 dai
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integrated in three parameters representing disease 
progression:

AUDPC. The Area Under Disease Progress 
Curve [76] following the formula:	

AUDPC =
n−1∑

i=1

yi + yi+1

2
× (ti+1 − ti)

where yi is the IF at the ith observation, ti is days 
at the ith observation, and n is the total number of 
observations.

 	• MDPr. The Monocyclic Disease Progress 
rate, as described by Arneson (2001) [33], is a 
proportionality constant that represents the rate of 
disease progress per unit of inoculum.

 	• LP50. The Latency Period is the elapsed time between 
inoculation day and the day when 50% of pustules are 
formed.

Image segmentation
Image-based quantification of rust damage requires a 
two-stage segmentation of the original images to sepa-
rate leaves from the background and to distinguish rust 
damage from healthy tissue. This segmentation was per-
formed for each image subset allowing the estimation of 
DS, IF and PS.

The colour differences between foreground and back-
ground in our images are represented by different values 
from the red (R), green (G), and blue (B) channels in the 
RGB colour space, allowing the object segmentation in 
the images. Accordingly, the first segmentation was per-
formed by applying a HUE index prevailing the green 
region to isolate the leaflets from the background with 
the formula:

	
HUE =

atan (2 (B − G − R))
30.5(G − B)

The threshold used to separate the background from the 
leaflets were based on the Otsu method [77]. To isolate 
rust pustules from the healthy tissue, a second segmen-
tation step was performed. Four indices commonly used 
in remote sensing and phytopathometry were tested 
for their capacity to detect rust pustules [78–82], three 
operating in the RGB channels and one in the CIELAB 
colour space stack. The selected indices were the Nor-
malized Green Red Difference Index (NGRDI = G−R

G+R  
) [83], Primary Colours Hue Index (HI = 2(R−G−B)

G−B
), Green Leaf Area Index (GLAI = 25(G−R)

(G+R−B)+1.25), 
and the a*- chrominance channel from CIELAB band 
(a∗ = 0.55(R−(0.2126R+0.7152G+0.0722B))

1−0.2126 ). Each index applies 
a different transformation of RGB values, therefore, each 

one requires a different threshold. The thresholds used 
were set as 0, 1, 1, and 0.50 for NGRDI, HI, GLAI, and a*- 
respectively. To maximize the accuracy of image-based 
pustules counting, the Watershed algorithm was also 
implemented, permitting to segment pustules connected 
by a few pixels that could be considered as two distinct 
lesions [84].

Image Compression and Processing Time
Image compression can improve the processing time 
while saving store capacity in RAM and ROM memories. 
To get the optimum processing time without compromis-
ing precision and accuracy, four different compression 
levels ranged from full resolution (3024 × 3024 pixels) to 
40% of the full resolution (1210 × 1210 pixels) were tested. 
Images compression were performed by applying the 
image_resize() function from “pliman” R package [47]. 
The processing time required to analyse all images at 
each compression level was calculated using mark() func-
tion from “bench” R package [85].

Method validation
To validate and select the best segmentation index and 
optimum image compression, the Lin’s concordance cor-
relation coefficient (ccc, ρc) [86] was computed between 
visual counting and software-estimation for each dai 
(from 8 to 13) and disease progression parameter 
(AUDPC, MDPr and LP50). The Lin’s ccc not only evalu-
ates how well the software-predicted values align with the 
visual counting values but also considers their systematic 
differences and scale variations. It provides a compre-
hensive assessment of the agreement by measuring both 
the correlation and the bias between the predicted and 
real values. Therefore, the ccc has been widely recom-
mended and utilized in studies that involve comparing 
estimated severity values with actual severity values in 
phytopathometry [25][87][88]. This parameter was cal-
culated using a resampling approach between predicted 
and visual values for each parameter using the R package 
“yardstick” [89]. In addition, the root-mean-square error 
(RMSE) were also calculated for an additional accuracy 
estimation between visual and software-based calcula-
tions. ρc values range from 0 to 1 while RMSE values are 
in the same units as the original data.

Description of rust evaluation method
The script controlling the image analysis method was 
developed in R software version 4.2.2 [90] under RStu-
dio version 2022.07.2.576, using the R packages “pliman” 
[47], “EBImage” [91], and “Tidyverse” [92]. The approach 
to analyse the images using batch processing were also 
implemented with the R package “foreach”, which facili-
tates to compute the analyses in a parallel process. This 
parallel strategy allows to split the jobs across multiple 



Page 12 of 14Osuna-Caballero et al. Plant Methods           (2023) 19:86 

cores in the CPU, regarding an extra processing time sav-
ing. All the analyses were performed on a PC equipped 
with an AMD Ryzen 9 CPU (16 cores) with 3.4  GHz 
frequency, a NVIDIA GTX 1660 Ti GPU, and 32 GB of 
RAM memory.

The method was developed using the set of 600 individ-
ual leaflets with different levels of rust disease symptoms. 
The symptoms ranged from no disease to leaflets heav-
ily covered with pustules. The image processing pipeline 
(Additional file 2), developed as a R script [93], consists 
of a function which imports and analyses the images fol-
lowing a batch processing strategy. First, the input plate 
image is loaded following a name pattern inside the file 
path, then it is resized, before the nine leaflets within 
plate image are split according to the first index segmen-
tation (HUE index). Then the split samples are analysed 
individually through a for loop using the measure_dis-
ease() function that estimates the total leaflet area, the 
number of pustules, the leaflet area covered by pustules 
and the mean pustule size, and saves these values for 
each sample in the output data frame. Furthermore, the 
developed function integrates an additional argument to 
analyse the input images in parallel (“parallel” argument 
set to “TRUE”) or sequentially (if parallel argument set to 
“FALSE”).

Therefore, the method can rapidly and accurately count 
the number of pustules (IF), report the percentage of leaf 
area covered by pustules (DS) and the average pustules 
size (PS) for each genotype daily from 8 to 13 dai. The 
daily values obtained for the same leaflet/genotype are 
then stored and combined into the AUDPC, MDPr and 
LP50 parameters, also stored in the output data frame.

List of abbreviations
a*	� values relative to the green–magenta opponent colours in the 

CIELAB colour space
AUDPC	� Area under the disease progress curve
b*	� values which represent the blue–yellow opponent colours in the 

CIELAB colour space
ccc	� the Lin’s concordance correlation coefficient
CIELAB	� Three-dimensional colour space defined by the International 

Commission on Illumination
CS	� Colony size
dai	� days after inoculation
DS	� Disease severity
GLAI	� Green Leaf Area Index
HI	� Primary Colours Hue Index
IF	� Infection frequency
IT	� Infection type
L*	� values referred as perceptual lightness in the CIELAB colour space
LP50	� Latency period
MAS	� Marker-assisted selection
MDPr	� Monocyclic disease progress rate
NGRDI	� Normalized Green Red Difference Index
PS	� Pustule size
RGB	� Red – Green - Blue
RMSE	� Root-mean-square error
SAD	� Standard area diagram
UAV	� Unmanned aerial vehicle
ρc	� Lin’s concordance correlation coefficient
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Additional file 1. Histograms showing disease parameters distributions. 
Red, yellow, and green arrows indicate the values for GEN261, GEN56 and 
GEN62, respectively.

Additional file 2. Image processing pipeline. (A) shows the image 
modifications from the original image to the individual leaflet output and 
(B) represents the function flowchart summarized in the script. Every co-
loured region represents the four main steps. In green, the image loading; 
in yellow, the leaflet segmentation; in blue, the lesion segmentation and, 
in grey, the storing of the collected data and reporting.

Additional Table 3. Table 1. This table shows the processing time for 600 
leaflets of the CPU in hh:mm:ss format by index, processing strategy and 
resolution applied.
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