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Abstract
Background  Gray mold and anthracnose are the main factors affecting strawberry quality and yield. Accurate and 
rapid early disease identification is of great significance to achieve precise targeted spraying to avoid large-scale 
spread of diseases and improve strawberry yield and quality. However, the characteristics between early disease 
infected and healthy leaves are very similar, making the early identification of strawberry gray mold and anthracnose 
still a challenge.

Results  Based on hyperspectral imaging technology, this study explored the potential of combining spectral 
fingerprint features and vegetation indices (VIs) for early detection (24-h infected) of strawberry leaves diseases. The 
competitive adaptive reweighted sampling (CARS) algorithm and ReliefF algorithm were used for the extraction 
of spectral fingerprint features and VIs, respectively. Three machine learning models, Backpropagation Neural 
Network (BPNN), Support Vector Machine (SVM) and Random Forest (RF), were developed for the early identification 
of strawberry gray mold and anthracnose, using spectral fingerprint, VIs and their combined features as inputs 
respectively. The results showed that the combination of spectral fingerprint features and VIs had better recognition 
accuracy compared with individual features as inputs, and the accuracies of the three classifiers (BPNN, SVM and RF) 
were 97.78%, 94.44%, and 93.33%, respectively, which indicate that the fusion features approach proposed in this 
study can effectively improve the early detection performance of strawberry leaves diseases.

Conclusions  This study provided an accurate, rapid, and nondestructive recognition of strawberry gray mold and 
anthracnose disease in early stage.

Keywords  Leaf diseases detection, Hyperspectral imaging, Spectral fingerprint features, Vegetation indices (VIs), 
Feature fusion, Machine learning
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Background
Strawberry is one of the most popular fruits with high 
nutritional value and economic effect. With the expan-
sion of strawberry planting area year by year, the influ-
ence of strawberry diseases is aggravated. Gray mold and 
anthracnose are two of the most destructive diseases in 
the growth of strawberry. When the strawberry leaves 
appear damage or necrosis, gray mold would infect the 
injured part under low temperature and humidity, result-
ing in strawberry fruit decay. Anthrax can cause local 
spots on the leaves of strawberry plants. In severe cases, 
the whole plant will wither and die [2, 37]. These two dis-
eases seriously affect the yield of strawberry and limit the 
development of strawberry food economy.

A common method for monitoring strawberry dis-
eases is laboratory test, which includes indicator plant 
leaflet grafting (IPLG), electron microscopy (EM) and so 
on [55]. These scientific methods are more accurate than 
visual inspection but inefficient, time-consuming and 
destructive, requiring precision instruments and rigorous 
operation. Therefore, an accurate and non-destructive 
identification technology of gray mold and anthracnose 
in early stage is critical to strawberry production man-
agement [23, 61].

Hyperspectral imaging technology combines the 
advantage of imaging technology and spectral technol-
ogy to obtain continuous and narrow band image infor-
mation and spectral data information of each pixel [19, 
24, 39, 60]. Therefore, Hyperspectral imaging, a relatively 
new non-destructive detection technique [16], has been 
proved to have a wide application prospect in the detec-
tion of plant diseases [5, 43, 50, 51, 56]. In the past few 
years, numerous studies used hyperspectral imaging to 
detect plant diseases. For instance, Nguyen et al. [38] 
used VIs and three-dimensional convolutional neural 
networks (3D CNN) to identify the grapevine vein-clear-
ing virus (GVCV) of grapevines at the early asymptom-
atic stages. The reference study showed that the machine 
learning combined with hyperspectral imaging technol-
ogy is useful to the early detection of plant disease. Chen 
et al. [8] obtained hyperspectral VIs for leaf spot detec-
tion by identifying sensitive bands. The reference study 
showed that hyperspectral imaging technology is highly 
feasible for detecting the occurrence of peanut leaf 
spot. Deng et al. [11] proposed a non-destructive citrus 
huanglongbing (HLB) field detection method based on 
hyperspectral reflectance which can identified the leaves 
at three different stages (healthy, symptomatic HLB-
infected, and asymptomatic HLB-infected). The refer-
ence study showed that the SVM model achieved 90.8% 
accuracy in three-group classification which imply the 
hyperspectral reflectance has great potential in early 
plant diseases detection [25] presented an early detec-
tion model based on the partial least squares linear 

discriminant (PLSLD) analysis method of hyperspectral 
images, extracted the normalized difference TFs and VIs. 
The reference study showed that only by VIs and NDTIs, 
the classification accuracy approached 87% and 84% 
respectively. Meanwhile, the accuracy by using the fusion 
features can reach up to 90%. Guo et al. [17] fused the 
spectral (OWs), texture features (TFs) and VIs of hyper-
spectral images to establish a SVM model and applied 
it to the recognition of yellow rust in wheat leaves. The 
study presented that the fusion scheme could reach 
95.8% accuracy, which was higher than only based on the 
OWs, VIs, and TFs (83.3%,89.5%, and 86.5% respectively). 
These studies imply that the fusion of different hyper-
spectral features is effective for early detection of plant 
diseases.

The above studies illustrated that hyperspectral imag-
ing technology is feasible for detecting strawberry 
diseases. However, most of above diseases detection 
strategies only consider single feature such as spectrum, 
VIs and texture, which are not well adaptable to unstruc-
tured environments. And many studies proved that the 
method of combining diverse features to identify plants 
diseases is useful. In addition, the fusion feature not only 
can improve the accuracy of identification model, but also 
can improve the stability and robustness of the detection 
model. Consequently, the main purpose of this work was 
to establish a robust methodology for early detection of 
strawberry leaves disease based on hyperspectral imag-
ing. The objectives were to: (1) Collect hyperspectral 
images of healthy and infected leaves (24-h infected) 
using a hyperspectral imaging system; (2) Extract spectral 
and VIs from the preprocessed hyperspectral images; (3) 
Select the spectral fingerprint and significant VIs using 
CARS and ReliefF algorithm, respectively; (4) Combine 
the spectral fingerprint and significant VIs as inputs of 
diverse machine learning models for early identification 
of strawberry leaves.

Materials and methods
Strawberry leaf cultivation and pathogen inoculation
Abundant strawberry leaves, which were used as objects 
during the experiment, are from Jiangsu Agricultural 
Expo Garden (China). The strawberry leaves without 
visual flaws (breakage, withered, spot etc.) and with good 
and similar nutriture were selected for experiments. 
Finally, a total of 360 strawberry leaves were adapted. 
Among them, 240 leaves were randomly selected to be 
infested with fungus (120 only infested with gray mold 
pathogens and 120 only with anthracnose) and the 
remainder were used as control. Anthracnose and gray 
mold pathogens, which were used to inoculate the straw-
berry leaves, are from Jiangsu Academy of Agricultural 
Science (China). The two different pathogens inocu-
lum incubated on two different petri dishes were taken 
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advantage of inoculating strawberry leaves when the 
mycelium bestrewed the medium. The 5 mm small round 
mycelium, which scattered on the edge of petri dishes, 
was picked out with a sterile toothpick and smeared at 
the surface of each leaf. Then, the diseases successfully 
infected the leaves. It was worth noting that at the begin-
ning, clean water mist was used to sprinkle all samples 
which was vital to enhance the success rate of the dis-
eases vaccination. Subsequently, the 240 infected (120 
only infested with gray mold pathogens and 120 only 
with Anthracnose) and 120 uninfected samples were sep-
arately kept in different growth containers with the equal 
controlled environment which with temperature (20  °C) 
and relative humidity (90.0%) and 12  h light/dark cycle. 
Finally, the hyperspectral images of 240 infected (120 
only infested with gray mold pathogens and 120 only 
with anthracnose) and 120 healthy samples were col-
lected 24 h after inoculation.

Hyperspectral image collection and processing
Hyperspectral imaging system
The spectral images were acquired by a hyperspectral 
imaging (HIS) system. The configuration of the HIS sup-
plied in this study was presented in Fig. 1. The illuminat-
ing system contains two 150 W halogen lamps adjusted 
with the height of 40 cm and at angle of about 45° to illu-
minate the camera’s field of view. The spectral range was 
from 400 to 1050 nm. As for the specific hardware con-
figuration of HIS, it can be referred to the previous article 
[59]. There was a software (Isuzu Optics Corp, Taiwan, 
China), which was provided to be compatible with the 
computer. It was able to set the related parameter of HSI.

Image acquisition and calibration
In this study, the strawberry leaves were scanned line by 
line on a removable platform and the vertical distance 
between this platform and the camera is 50  cm. The 
speed of the mobile platform is adjusted to 0.8 mm/s and 
the exposure time is fixed at 26 ms, which can avert the 
emergence of distortion availably. Finally, 240 hyperspec-
tral images (healthy and 24-h infected) were acquired. 
The hyperspectral images of deferent stage of infected 
samples (penetration period, incubation period, symp-
tom appearance period and widespread period) were 
shown in Fig. 2. The spot in the infected leaves of 24 h is 
not obvious. It can be difficult to identify the diseases by 
the naked eye. And the outward appearances of the leaves 
with gray mold and anthracnose disease were similar.

The inevitable dark current in CCD left some spec-
tral data with a great deal of noise, which generated the 
appearance of a large amount of bootless interference 
information resulting in the decrease of disease detection 
accuracy. Hence, the noises required to be eliminated by 
calibrating the original hyperspectral images before the 
images are used for extracting feature [62]. Therefore, the 
raw hyperspectral images are needed to revise by the fol-
lowing equation before they were used for detection.

	
Ri =

(
RSi − RDi

RWi − RDi

)
× 100%� (1)

where Ri  and RS represents the corrected hyperspectral 
reflectivity image and the strength values of equal pix-
els of the sample image, respectively. Relevant param-
eters RD represents the dark reference image, which can 

Fig. 1  The schematic diagram of the hyperspectral imaging system
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be gained when the camera lens in the shelter of non-
reflective and opaque. RW represents the white reference 
image and it can be gained by measuring a spectral image 
of the Teflon white board with a 99.9% reflectance.

Raw hyperspectral data usually contain a wealth of 
irrelevant information and noise, which can disturb the 
detection model [64]. Therefore, in order to eliminate the 
influence of these irrelevant information and noise, pre-
conditioning of spectral data become necessary. In this 
study, Savitzky–Golay (S-G) smoothing was engaged in 
the preprocessing [28, 36].

Data extraction
Extraction of spectral data
The changes in spectral absorption are closely related to 
the substance molecular structure. When the strawberry 
leaves are infected with gray mold and anthracnose, the 
internal molecular structure of the leaves will be changed 
markedly [66]. The spectral reflectance between healthy 
and infected leaves will be significantly different. There-
fore, the spectrum can be used to identify plant dis-
eases. The spectral information was extracted in the 
Regions of interest (ROI). In this study, a 20 × 20 pixels 
ROI which contained the imperceptible spot and its sur-
roundings was manually defined from each sample. The 
spectral data of one sample was designated by comput-
ing the mean of all pixel spectral reflectance values. The 
whole procedure was executed the HSI Analyzer soft-
ware (Isuzu Optics Corp., Taiwan. Finally, 360 samples 
containing 120 healthy and 240 infected were obtained. 
Afterwards, the whole samples were repeatedly and 
randomly divided into a training set and a testing set in 
a 3:1 ratio by the Kennard Stone algorithm. The train-
ing set with 180 infected (90 only infested with gray 
mold pathogens and 90 only with Anthracnose) and 90 

healthy samples were used for training the performance 
of the detected model, and the testing set with 60 (30 
only infested with gray mold pathogens and 30 only with 
anthracnose) and 30 uninfected samples were used to the 
extract the VIs.

Extraction of vegetation indices
VIs represents the physiological structure of plant includ-
ing pigment content, water, cellular structure and so on 
[13, 48]. When the pathogens infected the strawberry 
leaves, the structure of strawberry leaves will be changed, 
such as making chlorophyll contents decline. Hence, 
spectral VIs were calculated to discriminate and iden-
tify crop diseases and had achieved good performance in 
a large amount of research [25, 35, 45]. In this study, 25 
VIs related to crop diseases were selected from the arti-
cles for the detection of gray mold and anthracnose. The 
equations of each VIs were listed in Table 1.

Feature selection
Selection of spectral fingerprint features
Plenty of wave points, collinearity of data and redundant 
information existed in original hyperspectral of straw-
berry leaves resulting in the increase of data dimension, 
the reduction of inspection speed and the accuracy of 
classification model. Hence, there are a certain degree 
of hardships to detecting the two different leaves dis-
eases directly by using the original hyperspectral. There-
fore, reducing the dimension of the original spectral data 
and selecting the spectral fingerprint features, which 
can enhance the differences of hyperspectral between 
different types of leaves and boost the accuracy of clas-
sification model, was essential to the disease detection 
of strawberry leaves. The common use effective vari-
able selection methods contain CARS, genetic algorithm 

Fig. 2  The figure of penetration, incubation, symptom and widespread appearance period. (a) Anthracnose. (b) Gray mold
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(GA), successive projections algorithm (SPA) and so on. 
Multiple researches verify that CARS algorithm acquit-
ted itself brilliantly in eliminating redundant wavelength 
variables and selecting effective wavelength variables 
[65]. In addition, it can solve the problem of exponen-
tial explosion caused by inordinate number of spectral 
as well. Hence, in this study, the CARS algorithm was 
employed to reduce the information dimension and 
select the spectral fingerprint features.

CARS is a frequent-used feature value extraction algo-
rithm combining regression coefficients of PLS model 
and monte carlo sampling, which elements were similar 
with ‘natural selection’ [4, 18]. In this algorithm, adaptive 
reweighted sampling (ARS) selected the value with larger 
weight of regression coefficients in PLS model to build a 
fresh subcollection and dislodged the value with smaller 
weight. Then, the fresh subcollections were utilized to 
structure a PLS model. The spectral fingerprint features 
were defined as the wavelength which has the smallest 
root mean square error (RMSECV) in the PLS model 
after repetitive calculations [53].

Selection of significant vegetation indices
The number of wavelength points can be reduced 
quickly and availably and the accuracy of the model 
can be improved efficaciously by selecting significant 
VIs. ReliefF is a robust, successful and reliable attribute 
estimator, which can be able to provide the best weight 
vector and dispose noisy and flawed data [29]. ReliefF is 
widely used for selecting effective feature in the area of 
detecting plants diseases by VIs. Therefore, the ReliefF 
algorithm was used to single out the most sensitive VIs 
for training. In this study, 25 VIs were used to discrimi-
nate three conditions of strawberry leaves (healthy, gray 
mold and anthracnose). ReliefF makes use of the degree 
of distinction between the testing values and the near 
instances to calculate the weight of features [46]. Draw on 
their weights, the attribute of VIs will be arranged in rank 
by ReliefF. The vital procedure to highlight is that the 25 
features weights should be initialized to zero at first.

Development of the recognition model for strawberry 
disease
Hyperspectral imaging system intermixed with the che-
mometric methods, is recognized as a high efficiency, 
speedy, economical and practical, and nondestructive 
detection technology [40, 63]. In this study, BPNN, SVM 
and RF were chosen to develop the recognition models 
for strawberry diseases using different features. Spectral 
fingerprint features, VIs and the fusion features were 
considered as inputs to these three models, respectively. 
BPNN is a typical feed-forward learning algorithm, 
which consists of positive communication and signal 
error back-propagation, includes one input layer, one or 

more hidden layers and one output layer. [49]. There are 
large quantities of preponderances by using BPNN to 
classify the diseases, such as the architecture is much less 
complicated, the pattern is easy to build and the compu-
tation speed is fast which are conducive to the efficiency 
of disease classification [54]. SVM is an ideal measure 
to process data which is high dimension, nonlinear and 
noisy [30]. It takes advantage of structural risk minimi-
zation (SRM) principle to maximize the margin of class 
separation for better generalization performance of SVM 
[9]. It was proposed as the priority option for plant dis-
ease detection due to the promising performance. RF is a 
valid classifier which is capable of classifying data in high 
dimensions with many classes and acquire high preci-
sion [41, 52]. Plenty of independent classifiers (decision 
tree) construct the architecture of it. The voting results of 
each decision tree determines the class label of the input 
sample.

Results
Spectral behaviors
The spectral reflectance curves and principal compo-
nent analysis (PCA) distribution of three types of leaves 
were shown in the Fig.  3. It can be seen intuitively in 
Fig.  3 that there were no significant differences among 
the original spectral reflectance curves of healthy straw-
berry leaves and the leaves infected by gray mold and 
anthracnose disease. The three different types of spectral 
curve exhibited similar trends. In Fig. 2a, b, the spectrum 
(400–1000 nm) had a high absorption peak (550 nm) and 
a weak absorption valley (680 nm). The absorption peak 
at 550 nm was mainly the first overtone of O-H stretch-
ing and N-H stretching absorption in carbohydrates and 
proteins. The absorption valley at 680 nm was associated 
with the second overtone of CH and the stretching of 
CH2. In addition, a rapid increase in reflectance could be 
seen in the wavelength range of 680 to 750 nm, and from 
750  nm to the end, the reflectance gradually decreased. 
In the wavelength range of 750–850  nm, the spectral 
reflectance of healthy strawberry leaves was higher than 
that of the suffered, and from 850  nm to the end, the 
reflectance of leaves with gray mold disease was higher 
than that of another two leaves. Figure 3c, d showed the 
diagrams of the three types of strawberry leaves using 
PCA, and it could be seen that the distribution of leaf 
samples of different categories was concentrated in the 
same region, which further indicated that similarity of 
these samples was relatively high. Therefore, it was diffi-
cult to detect diseases on strawberry leaves using spectral 
features alone.

Vegetation indices analysis
In this study, a total of 25 VIs was used for leaves diseases 
detection. Pearson correlation analysis is conducted 
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in this study. The closer the absolute value of correla-
tion coefficients between two different features to one, 
the stronger the correlation. The correlation coefficients 
between different VIs were presented in Fig.  4. Some 
indicators had strong correlations with others, but some 
do not. As an illustration, the PRI correlation index was 
quite high with the NBNDVI, NDVI, SIPI, NPI, NCPI, 
and PPR, (−0.53, −0.54, −0.62, −0.75, −0.63 and − 0.85, 
respectively) compared to RNDVI, FRI2, FRI3, WI, and 
PSRI (0, 0.14, 0, 0 and − 0.05, respectively) which had 
almost no connection with PRI. The FCI index and FRI1 
index demonstrated high correlation coefficients (1.0). 
FRI3 had a strong correlation coefficient with RNDVI and 
FRI2 (0.9 and 1.0 respectively). Additionally, the NPQI, 
NCPI and GNDVI exhibited a phenomenon that was 

unconnected to any other index (0 ~ 0.2). The existence of 
correlation coefficient matrixes was of vital importance. 
The correlation analysis of different VIs offers a theoreti-
cal foundation for further VIs extraction and improved 
the robustness of the detection model.

In addition, the PCA distribution of different types of 
leaf samples based on VIs was shown in Fig. 5. The fig-
ure revealed that the distribution of healthy, gray mold 
and anthracnose leaves in PCA was quite concentrated 
and mixed. As could be seen from the figure clearly, 
the green, red and blue particles representing healthy, 
gray mold and anthracnose leaves of strawberries were 
densely distributed and mixed. It also demonstrated that 
the VIs between healthy and infected leaves were similar. 
As a result, it was quite difficult to differentiate healthy, 

Fig. 3  Result of the spectral reflectance curve and PCA of three types of leaves. (a) The original spectra. (b) The spectra after smooth process. (c) The PCA 
distribution of different types of leaves on original data. (d) The PCA distribution of different types of leaves on smooth data
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gray mold and anthracnose leaves using the VIs alone. 
Therefore, the experiment simultaneously combined 
spectral fingerprint features and VIs as inputs to achieve 
accurate detection of strawberry leaves diseases.

Selection of spectral fingerprint and vegetation indices for 
strawberry disease detection
In this study, a total of 616 original spectral features and 
25 VIs were used for strawberry diseases detection. In 
order to improve the performance of the diseases detec-
tion models and speed up the computation, this study 
respectively applied CARS and ReliefF algorithm to fur-
ther extract the spectral fingerprint features and VIs.

Extraction of spectral features using CARS.
During the running time of CARS algorithm, some 

irrelevant wavelengths were removed and some impor-
tant features which contained more feature information 

were extracted. Figure  6a–c showed extraction of spec-
tral fingerprint features. Finally, 22 optimal spectral fin-
gerprint features were obtained in this experiment, and 
their distribution over the full spectral range was shown 
in Fig. 6d.

Extraction of vegetation features using ReliefF
The ReliefF algorithm was used to sort the weights of 
25 VIs. The result of weight coefficient analysis of 25 
VIs was shown in Fig.  7. After repeated experiments, a 
threshold value of 0.035 was set and then the VIs with 
a weight greater than the threshold value were selected, 
and 6 VIs (PRI, NCPI, NPQI, FRI3, FCI, GNDVI) were 
taken eventually for subsequent classification. Among 
them, PRI was sensitive to changes in carotenoids in liv-
ing plants, which can indicate photosynthetic light utili-
zation and carbon uptake efficiency. NCPI was derived 
from reflectance at the visible light range to estimate the 
composition and abundance of plant pigments, and it 
was associated with photosynthetic efficiency and com-
position of stress related pigments. NPQI was identified 
as one of the most discriminative indices in early stages, 
in more details, the NPQI was more sensitive to the chlo-
rophyll degradation into pheophytin. FRI3 and FCI both 
respond to leaf physiology. GNDVI was a more accurate 
measure of chlorophyll content than NDVI. Figure  8a 
showed the PCA distribution of healthy and infected 
leaves based on 6 VIs. The correlation coefficients among 
the 6 VIs are presented in the Fig. 8b. It can be seen from 
Fig. 8b that these 6 VIs were not strongly correlated with 
each other, the FCI correlation index was quite low with 
the GNDVI, NPQI, NCPI, PRI, FIR3 (−0.3, 0.22, 0.19, 0.3, 
−0.52, respectively). The GNDVI correlation index with 
NPQI, NCPI, PRI, FIR3 is −0.3, 0.0, −0.18, −0.29 respec-
tively. The NPQI correlation index with NCPI, PRI, FIR3 
is 0.0, 0.15, 0.0 respectively. The NCPI correlation index 
with PRI, FIR3 is −0.52 and 0.0. The correlation index 
between PRI and FIR3 is 0.0. The low correlation index 
indicated that they all have good independence.

Comparison of the performance of models with different 
features
After feature extraction, spectral fingerprint features and 
VIs were combined as the inputs of the classifiers in this 
experiment. To compare the impact of different features 
on diseases detection, three different classifiers, BPNN, 
SVM, and RF, were developed in this experiment. The 
classification accuracies of diseases detection on straw-
berry leaf using various characteristics and classifiers 
were presented in Table 2. Table 2 showed that the fusion 
features, which combined spectral fingerprint features 
and VIs, had greater identification accuracy when com-
pared to a single feature in three classifiers, and it also 
provided a greater improvement in the efficiency of the 

Fig. 5  The PCA diagram of strawberry leaves based on vegetation indices

 

Fig. 4  The correlation coefficients diagram of 25 vegetation indices
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model. It was reasonable to believe that the combination 
of spectral fingerprint features and VIs was quite helpful 
to the early categorization of strawberry leaves diseases. 
Fusing the two features as inputs to machine learning 
models might be more effective in early perception. As a 
result, the model based on fusion features might obtain 
the greatest classification performance, which provided 
better robustness and classification accuracy. Among the 
detection models developed using fusion features, the 
BPNN classifier had the highest classification accuracy of 
97.78%, followed by the SVM and the RF classifier, which 
had respective accuracy ratings of 94.44% and 93.33%. 
The reason for this phenomenon may be that there was 
a certain nonlinear relationship between fusion features 
and disease coefficients. It illustrated that the BPNN 

model had the ability to deliver higher accuracy and 
stronger generalization performance, which can work as 
an excellent model to spot early diseases in strawberry 
leaves. However, a BPNN classifier with a more compli-
cated network structure required a longer operating time 
when the efficiencies of these methods were taken into 
account. But the amount of time needed was still within 
the acceptable range.

In addition, the spectral fingerprint features selected in 
the model only account for 3.57% of the original spectral 
data, and the VIs only occupy 24% of the original data, 
which greatly reduced the burden of the computer and 
improves the efficiency of the model. In actual operation, 
identification time and detection efficiency were of vital 
importance in detection factors. Therefore, the fusion 

Fig. 6  Result of extraction of the optimal features. (a) The number of sampled variables. (b) 10-fold RMSECV values. (c) regression coefficients of each 
variable. (d) Spectral fingerprint features distribution
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of the two features was more conducive to the detection 
of strawberry leaves diseases, which can provide better 
detection accuracy and robustness.

Conclusions
This study investigated the feasibility of applying hyper-
spectral imaging combined with spectral fingerprint 
features and VIs for early detection of gray mold and 
anthracnose on strawberry leaves. The characteristic dif-
ference between fungal infected and healthy strawberry 
leaves was very small in the early stage, which was dif-
ficult to be observed. In this study, 616 original spectral 
features and 25 VIs were used to detect strawberry dis-
eases. In order to improve the performance of the dis-
ease detection model and speed up the computation, 
the CARS and ReliefF algorithm were used to further 

extract the spectral fingerprint features and VIs, respec-
tively. Finally, a total of 22 optimal spectral fingerprint 
features and 6 important VIs (PRI, NCPI, NPQI, FRI3, 
FCI, GNDVI) were extracted. After that, three machine 
learning models, BPNN, SVM and RF, were developed 
for the early identification of strawberry gray mold and 
anthracnose, respectively, using spectral fingerprint, 
VIs and their combined features as inputs. The results 
showed that the combination of spectral fingerprint and 
VIs had better recognition accuracy compared with indi-
vidual features as inputs, and the accuracies of the three 
classifiers were 97.78%, 94.44%, and 93.33% (BPNN, SVM 
and RF), respectively. This result indicated that the fusion 
features approach proposed in this study can effectively 
improve the early detection performance of strawberry 
leaves diseases. In future research, more researches will 

Fig. 8  Result of Relief algorithm. (a) PCA of the six vegetation indices. (b) The correlation coefficients among the 6 vegetation indices

 

Fig. 7  Result of weight coefficient analysis of 25 extracted features
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focus on: (1) exploring more effective leaf features for 
better feature fusion; (2) increasing the number of sam-
ples with different disease infestation levels to further 
validate the effectiveness and robustness of the algorithm; 
and (3) building deep learning frameworks to replace the 
traditional machine learning methods to detect early dis-
ease infection in strawberry leaves.
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