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Abstract 

Background Late and early leaf spot in peanuts is a foliar disease contributing to a significant amount of lost yield 
globally. Peanut breeding programs frequently focus on developing disease-resistant peanut genotypes. How-
ever, existing phenotyping protocols employ subjective rating scales, performed by human raters, who determine 
the severity of leaf spot infection. The objective of this study was to develop an objective end-to-end pipeline 
that can serve to replace an expert human scorer in the field. This was accomplished using image capture protocols 
and segmentation neural networks that extracted lesion areas from plot-level images to determine an appropriate 
rating for infection severity.

Results The pipeline incorporated a neural network that accurately determined the infected leaf surface area 
and identified dead leaves from plot-level cellphone imagery. Image processing algorithms then convert these labels 
into quality metrics that can efficiently score these images based on infected versus non-infected area. The pipeline 
was evaluated using field data from plots with varying leaf spot severity, creating a dataset of thousands of images 
that spanned conventional visual severity scores ranging from 1–9. These predictions were based on the amount 
of infected leaf area and the presence of defoliated leaves in the surrounding area. We were able to demonstrate 
automated scoring, as compared to expert visual scoring, with a root mean square error of 0.996 visual scores, on indi-
vidual images (one image per plot), and 0.800 visual scores when three images were captured of each plot.

Conclusion Results indicated that the model and image processing pipeline can serve as an alternative to human 
scoring. Eliminating human subjectivity for the scoring protocols will allow non-experts to collect scores and may 
enable drone-based data collection. This could reduce the time needed to obtain new lines or identify new genes 
responsible for leaf spot resistance in peanut.
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Background
Peanut is an economically important agricultural crop 
that is grown and consumed world-wide. It is consid-
ered a sustainable source of protein due to its ability to 
grow in soils that are difficult for other crops while also 
requiring less water than tree nuts [1]. With over 1.6 mil-
lion acres of peanuts being grown annually in the United 
States alone, it is a major contributor to the food supply 
in the United States [2]. Early and Late Leaf Spot, caused 
by Passalora arachidicola and Nothopassalora personata, 
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are often considered the most critical yield-reducing 
diseases in peanut [3]. Yield loss caused by leaf spot can 
be over fifty percent [4]. Estimates place the lost yield as 
high as $600 million annually, where fungicide control 
costs can be as high as $250 per hectare [5]. The breed-
ing of peanut varieties that are naturally resistant to this 
highly destructive disease is key to many peanut breeding 
programs worldwide [6–9].

The most common method to determine the severity 
of infection is through a field survey [10]. Here, individ-
ual plots within a field trial will be evaluated or “scored” 
by one of the expert raters who perform the field trials. 
Scoring methods typically involve a set of subjective 
guidelines that an expert follows to rate the severity of 
infection, such as the Florida 1–10 scale as outlined by 
Chiteka et al. or the modified 9-point scale as described 
by Subrahmanyam et  al. [6, 11]. These scales have been 
used extensively by research teams in breeding programs 
due to their ease of use [12–15]. These scales are non-
destructive as they are based solely on visual symptoms; 
however, it contains human biases. This human element 
in the scoring process makes the results difficult to repli-
cate and can lead to different analyses of the same geno-
types and severities. Collaboration between breeders is 
made difficult due to this source of error, such that cor-
recting the cause of discrepancies between visual sever-
ity scores becomes largely impractical. It can be difficult 
to identify what variations in severity score between two 
trials of the same genotype are caused by human subjec-
tivity in scoring metrics instead of true variations in the 
response to leaf spot by the different trials.

Due to difficulty in scoring, new methods of disease 
detection have evolved within the realm of remote sens-
ing. For example, the use of canopy hyperspectral reflec-
tance measurements has proven to be a reliable method 
for the detection of leaf spot within peanut as well as 
many other types of crop pathogens [10, 16–20]. These 
methods require specialized sensing equipment, spe-
cifically hyperspectral or infrared imaging systems, 
which can be expensive and difficult to use properly. 
Beyond hyperspectral imaging systems, computer vision 
approaches have become popular for the purpose of 
classification. These developments offer new capabili-
ties for detection that is more similar to human vision 
approaches. Outside of the agricultural world, these types 
of deep learning networks have been used extensively for 
damage detection in subjects ranging from large build-
ings to small semiconductor wafers [21–24]. New styles 
of convolutional neural networks have achieved high 
accuracy when used for the classification of plants and 
their associated diseases [25]. Numerous existing net-
works can be used for transfer learning, facilitating the 
process of developing a neural network for classification 

[26]. Well-made convolutional networks for this type 
of task can identify the texture and color of the disease, 
which ensures that the network is properly identifying 
disease symptoms present in the image [27]. Given that 
one of the key metrics used in scoring leaf spot severity is 
the percentage infected region, a neural network capable 
of identifying leaf spot lesions could be used to determine 
infection severity, as has been attempted in phenotyping 
pipelines previously [6, 28].

Disease presenting as a form of visual sore on vegeta-
tion is not unique to Peanut, with recent research focus-
ing on development of segmentation networks for disease 
detection in agriculture. Recent work has shown that 
lightweight neural networks are capable of being trained 
to properly segment disease across a range of agricul-
tural settings [29]. For instance, other recent work has 
found that disease segmentation can be used to detect 
Tar Spot disease in corn with the goal of tying the out-
puts of the segmentation network to a traditional disease 
scale [ahamd2024tar]. A similar convolutional network 
based pipeline for disease severity determination in plum 
has also been developed [30]. Peanut and other ground-
nut have also been the subject of disease detection and 
severity determination pipelines. Chapu et. al. developed 
a pipeline capable of classifying leaf spot disease severity 
using a number of camera systems and models that clas-
sify severity based on color indices and normalized vege-
tation indices [31]. Similarly, Lin et al. developed a system 
for detecting individual leaf spot instances, counting the 
number of lesions on in-field peanut using an automated 
image-capturing system capable of navigating the field 
[32]. However, neither prior pipeline has (1) validated 
against the conventional 9-point scale scale and visual 
scores; and (2) has incorporated instance segmentation 
to provide quantitative ratios of diseased to healthy leaf 
areas; and (3) has been validated over multiple years of 
data at multiple trial locations. By incorporating the seg-
mentation networks seen with other disease monitoring 
systems and expanding the rigor of the dataset, it is pos-
sible to develop a leaf spot severity scoring system that 
more closely resembles the process of a traditional breed-
ing pipeline. The outputs of the neural network allows for 
the pipeline to be used with the existing 9-point scale and 
also independently, something prior neural networks and 
disease scoring pipelines did not incorporate.

To resolve the aforementioned issues related to subjec-
tivity in leaf spot grading and lower the barrier of entry 
to automated leaf spot scoring, the newly developed 
pipeline uses handheld cameras to image peanuts which 
have been exposed to leaf spot pathogens. These images 
are processed by a semantic segmentation neural net-
work where the ratios of healthy, infected, and dead plant 
material is extracted as an intermediary step. A simple 
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fitting function is then used to convert these values to a 
ratio of plant material that has been infected or destroy 
by leaf spot. Finally, this value is converted to the more 
traditional 9-point scale [11]. This process serves to mini-
mize the human subjectivity error present during scor-
ing of leaf spot severity while building from the 9-point 
scale to preserve the traditional interpretation of leaf spot 
severity scoring. Compared to other automated leaf spot 
scoring pipelines, which only return an estimated 9-point 
scale score or information related to the number and size 
of lesions, this pipeline generates both the intermediary 
ratios of infected, dead, and healthy leaf area as well as a 
score in accordance with the 9-point scale, which ensures 
that this pipeline can meet the needs of researchers and 
breeders regardless of how they choose to score severity 
[31, 32].

This paper is structured as follows: "Methods" section 
describes the materials and methodology employed dur-
ing this study. It details the choice of camera equipment 
used, the software used in developing this pipeline, and 
how the performance was validated. "Results" section 
details the results of this pipeline, showcasing the accu-
racy to which it can predict the disease severity based 
when the protocols established in "Methods" are fol-
lowed. "Discussion" section provides a discussion of the 
limitations of this study and a discussion of how well the 
results resolve the problems originally described, and a as 
proposal of future work to improve upon the results seen 
here. Finally, "Conclusion" section is a brief conclusion, 
reestablishing the goals of this project and describing 
how well the original goals were accomplished.

Methods
The process for developing the end-to-end pipeline con-
sisted of two phases, (1) using data collected during the 
2021 growing season to develop the trained segmenta-
tion network and (2) employing this new network on data 
collected during the 2022 growing season to finalize the 
conversion from network output to scored severity. The 
datasets from 2021 and 2022 were kept separate to ensure 
the generalizability of the model and to prevent over fit-
ting to specific year-related patterns. Figure 1 shows the 
general data flow that was used during each phase of the 
project.

Field trials
Data was collected over two years, across two locations. 
The first location was the Peanut Belt Research Sta-
tion (PBRS) near Lewiston, North Carolina, located at 
36.1333, − 77.1705. The second location was the Upper 
Coastal Plain Research Station (UCPRS) near Rocky 
Mount, North Carolina, situated at 35.8943, − 77.6812. 
A total of 2120 plots were grown for the purpose of 

studying leaf spot over the course of the 2021 and 2022 
growing seasons. Field trials consisted of 530 plots, with 
each trial containing 265 different genotypes of peanut to 
be monitored. Each plot consisted of two rows of a sin-
gle line. Rows were approximately 0.9 meters in width 
and 7.6 meters in length. Further information regarding 
planting, visual scoring, and image capture dates can be 
found in Table 1 and a complete description of the trials 
can be found in [20].

Image acquisition protocol
To facilitate image acquisition and development of nec-
essary data sets, a protocol was developed to image in 
the field. To ensure that the canopy was at a consist-
ent distance (3 ft) from the camera, handheld mounts 
were constructed to serve as references. A schematic of 
this simple setup is shown in Fig. 2a in which a 36-inch 
wooden dowel was combined with a small phone mount. 
A spatial calibration block was fixed to the end of the 
dowel; This calibration block was captured in all images 
and ensured that a spatial reference was included in all 
images, allowing the determination of the real world size 
of objects in the images [33–35]. Per Fig. 2b, this config-
uration allowed the user to hold the mount so that the 
reference block rested just above the canopy while the 
phone was positioned at the opposite end of the dowel. 
The pixel sampling distances in each image were con-
verted to physical distance by d = a/b , where d is the 
calibrated sampling distance, a is the width of the block 
in pixels, and b is the width of the block in pixels. For 
this setup, the block had a width of 1 inch, and gener-
ally the camera was oriented such that b = 282 pixels, so 
these images had an approximate sampling distance of 
282 pixels / inch. These images were 3042 x 4032 pixels 
in size, the maximum resolution of the Samsung Galaxy 
S8 phones used. The effective focal length of this camera 
was 24 mm. Employing a wide angle lens ensures that off-
axis regions are included in the captured images, ensur-
ing that more than just the highest leaves are imaged. All 
images were captured on days with minimal cloud cover 
in the early afternoon, ensuring that consistent lighting 
was present in all images.

A minimum of three images per plot were captured. 
The first and last images were captured at the extreme 
ends of the length of the plot, with the image arranged to 
capture the edge of the plot while minimizing non-plant 
area in frame. Often, more than the minimum number 
was taken as the imaging personnel walked from one 
end of the plot to the other. This ensured good coverage 
was maintained while also allowing each plot to be rap-
idly imaged. An example of these images can be seen in 
Fig. 2b. Table 1 contains the dates at which the imaging 
protocol was performed. On dates image capture took 
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place, a random number generator was used to select a 
subset of plots for imaging.

A goal of having included many different peanut lines 
at different times in the growing season was to ensure 
that the data set included peanuts with different canopy 

structures, specifically as it relates to leaf density. An 
example of images that showcase different structures 
can be found in Fig.  3. These images were used in the 
development process of this pipeline as part of the 
Image Scoring Data Set described in Transfer learning 
and selecting the neural network architecture section.

Fig. 1 Overview of (a) data sets created to support this pipeline’s development, and (b) the overall data flow when executing the pipeline

Table 1 Collection of planting, harvesting, and imaging dates

2021 Growing season 2022 Growing season

UCPRS PBRS UCPRS PBRS

Planting dates 3-May-21 15-May-21 Planting dates 9-May-22 28-Apr-22

Harvesting dates 22-Oct-21 Harvesting dates

Imaging dates 15-Jul-21 30-Sep-21 Imaging dates 29-Sept-22 5-Oct-22

8-Oct-21 11-Oct-22

11-Oct-21
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Data sets created for pipeline development
Three primary data sets were created over the course 
of this study, each with a different purpose. The first 
will be referred to as the Neural Network Training Data 
Set. This data set was made of images captured at both 
UCPRS and PBRS locations during the 2021 growing 
season. All of the 2021 imaging dates found in Table 1 
were included in this data set. The final result of this 
data set was 514 image / semantic segmentation labels 
that were used for developing the neural network used 
in the pipeline. The second data set is the Image Scoring 
Data Set. This data consists of 476 images that were col-
lected at the PBRS location on 5 Oct. 2022 and includes 
data from plots that were manually scored from an 

infection level 1 to an infection level 9. This data set 
was used to develop the scoring function and model 
its success against a manual ground truth scoring by a 
trained expert. The last major data set is the Temporal 
Data Set. This data set includes randomly sampled field 
trials toward the end of the 2022 growing season. Two, 
subsets of this data set were created by randomly imag-
ing plots from the UCPRS location in accordance with 
the imaging protocol. The first subset was collected at 
the UCRPS location on 29 September 2022 and con-
tained 1,434 images. The second data set was collected 
at the same UCPRS location on 11 October 2022 and 
contained 714 images. Both subsets involved a different 
set of randomly sampled plots with 118 plots in total 
imaged for the Temporal Data Set.

Fig. 2 Cell phone a image acquisition configuration; and b example of acquired image of the canopy and calibration target

Fig. 3 Visualization of peanut of varying leaf densities and plot thickness. Each of these images was captured during field trials and used as part 
of the Image Scoring Data Set detailed in Transfer learning and selecting the neural network architecture section
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Semantic segmentation labeling
Image processing started by randomly cropping the raw 
images to a smaller dimension of 224 × 224 pixels. These 
dimensions are commonly seen in many neural network 
architectures, such as ResNet50 and MobileNet [36, 37]. 
All training images were cropped randomly from the 
fill size raw images using a simple MatLab script that 
selected a single random crop from each of the images 
from the 2021 growing season. The crops were taken ran-
domly by using a random number generator to choose 
an upper left pixel for the subimage. The three remain-
ing corners were calculated and the subimage was then 
cropped out of the larger image. These cropped subim-
ages were stored in a local directory as individual images 
to facilitate the training process.

Using the Labelbox platform, labels for semantic seg-
mentation were generated on hundreds of these patches 
[38]. At the pixel level, the images were divided into one 
of four classes: (1) healthy, or uninfected green leaf area 
that shows no signs of leaf spot infection; (2) infected, 
which represents living but discoloured leaf tissue caused 
by the leaf spot infection; (3) dead, which is comprised 
of non-living and defoliated plant tissue; and (4) non-
plant, which describes any pixel capturing non-plant 
or indiscernible material. Due to the three dimensional 
canopy structure of peanut, it is possible that some area 
becomes obscured due to shadows cast from the upper 
canopy. This behavior was observed during the labeling 
process by our team; to resolve this, any regions that were 
obscured due to shadows cast part of the canopy struc-
ture was considered “non-plant” material for the purpose 
of semantic segmentation. Upon completing each image 

label, Labelbox saved a semantic label image that can be 
paired with its associated RGB image during training. 
Figure  4 shows one of these hand-made semantic label 
images. The complete data set containing the RGB images 
and the labels is available on a GitHub repository1.

Transfer learning and selecting the neural network 
architecture
A neural network was transfer learned to perform 
semantic segmentation, such that each pixel would be 
classified as either healthy, infected, dead, or non-plant 
material. Four networks were chosen and trained prior 
to down-selecting the best-performing model. The U-Net 
architecture was first chosen given its origin in biomedi-
cal image segmentation and powerful encoder-decoder 
structure [39]. Three additional deep learning networks 
were also employed: MobileNet, ResNet18, and ResNet50 
[36, 37]. These were implemented using DeepLabV3+ in 
MatLab, allowing the networks to all perform pixel-wise 
classification on the images [40].

The training data subset consisted of 420 image and 
semantic segmentation label pairs. The validation and 
holdout data subsets were 48 images each, representing 
a split of 81.4% / 9.3% / 9.3% for the training / validation / 
holdout split from the original Neural Network Develop-
ment data set. Table 2 describes the raw pixel counts of 
each of the individual classes in the training data set as 
well as the normalized frequency for the classes.

Fig. 4 Comparison of a an image patch versus b its semantic segmentation label, where red represents infected lesion area, green represents 
the healthy subclass, yellow represents dead or defoliated plant material, and black represents non-plant / non-discernible area

1 GitHu b Repos itory  conta ining  all train ing data.

https://github.ncsu.edu/jclarse2/AutomatedLeafSpotScoring
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All four networks were trained using the following 
settings: 

1. Use of the Adam optimizer and a mini-batch size of 
32 [41]. Note that mini-batch sizes of 8, 16, 32, and 
128 were studied. A batch size of 32 resulted in the 
highest mean accuracy when training the network 
for 20 epochs with training parameters identical to 
the full model - the only change was the early stop-
ping parameter was removed. Table 5 contains a brief 
summary of all mini-batch sizes that were studied 
and their finalized result metrics when evaluating the 
same validation subset as the finished model. 32 was 
the selected value for the mini batch size due to the 
maximum mean accuracy found with this testing.

2. Training parameters, summarized in Table  4, were 
identical for all four networks.

3. The training process spanned a dynamically chosen 
number of epochs based on an early stopping pro-
cedure. Note that while a maximum of 1500 epochs 
was technically possible and validation patience was 
150 epochs, the actual number of training epochs 
was much lower [42–46]. MobileNetV2, ResNet18, 
ResNet50, and U-Net reached their minimum valida-
tion error at 4, 5, 12, and 60 epochs respectively, and 
these were the final models that were evaluated. Each 
model was trained for a further 150 epochs (although 
this overtrained version was not saved) to ensure that 
the model with minimum validation error had been 
selected.

4. The risk of over fitting was minimized by dividing the 
data into 81.4% training, 9.3% validation, and 9.3% 
holdout. All training, validation, and holdout data 
sets were comprised exclusively of crops taken from 
images from the 2021 growing season, although both 
field trials were used to create the model.

5. Class weights were incorporated into the loss func-
tion. The original data set suffered from a high degree 
of imbalance as shown in Table  2. Class weights, 
summarized in Table 3, were used to correct for this 
in each network, as weighting the classes should 
result in a more reliable performance on the unbal-
anced data set [47].

6. GPU acceleration was used to train the models at a 
faster rate than traditional CPU training. System 
specifications included an RTX 3060 12GB, a Ryzen 5 
5600X, and 32GB of system RAM.

Results
Imaging protocol
The main metric for success with respect to the imaging 
protocol was the number of images captured and plots 
imaged compared to the speed of a human scorer. To that 
end, imaging per plot takes an individual approximately 
1 minute. For a field of 530 plots, this would take almost 
9 hours for an individual to properly image for scoring 
protocols. By comparison, an individual scoring in com-
pliance with the traditional 9-point can score the same 
number of field trials in approximately 1–1.5 hours. To 
this end, the imaging protocol was much less time effi-
cient than traditional field surveys, with imaging taking 
almost five times longer compared to a traditional field 
survey.

We also see a reduction in total plant canopy area used 
for scoring through the imaging protocol as described. 
Given the typical ground sampling distance of 94 pixels 
/ inch, we are left with an approximate 0.90 m2 area per 
image taken. Compared to a human scorer who can see 
the entirety of the 6.8 m2 plot at a glance, this is a massive 
reduction in sampled area.

Neural network performance
As previously described, a holdout data set of 48 image 
/ segmentation label pairs was used to evaluate how well 

Table 2 Raw counts and normalized values

Raw counts Normalized 
frequency

Healthy 15,439,914 0.7341

Infected 440,205 0.0209

Non-plant 3,848,687 0.183

Dead 1,303,985 0.062

Table 3 Class weights for training

Class weights

Healthy Infected Background 3 Dead

0.1966 1.1133 1.0417 0.9651

Table 4 Model training settings

Setting Value

Initial learning rate 0.001

Learn rate schedule settings None

L2 Regularization 0.0001

Gradient decay factor 0.9

Squared gradient decay factor 0.999

Epsilon 1e−8

Batch normalization statistics Population
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the models generalized to new information. The per-
formance on this data set would demonstrate how the 
model performs on future new data sets. The hold out 
data set was used to generate two primary metrics of 
evaluation. The first metric was the Jaccard Index, which 
evaluates the similarities in the semantic segmentation 
labels versus the generated labels by comparing the inter-
section areas of each class to the overlapping areas of 
each class. The ResNet50 model scored the highest, with 
a Jaccard index of 0.770. A full list of Jaccard indices for 
each network, alongside global accuracy, can be seen in 
Table  6. The time for each model to perform inference 

was determined by running each model on one thousand 
224 × 224 pixel images, with the mean time to perform 
interference recorded. The GPU utilization was logged 
during this using the program GPU-Z version 0.8.9, 
with the mean GPU Utilization during this time period 
recorded for each model. Each of these tasks were per-
formed using the aforementioned system with Ryzen 
5600X CPU and RTX 3060 graphics card.

The normalized Confusion Matrices for all four of the 
preliminary networks can be seen in Fig. 6, which shows 
how well the architectures could identify each pixel 
belonging to each class. While each model demonstrated 

Fig. 5 Comparison of an image patch versus its generated label. Green areas represent Healthy regions, red represents infected lesions or Infected, 
and black regions represent background or Non-Plant material. No completely dead material can be seen in this example

Table 5 Evaluation criteria on the validation subset with a ResNet Model Trained with varying mini batch size

Mini batch size Global accuracy Mean accuracy Mean IoU Weighted IoU

8 0.8038 0.68738 0.42089 0.7239

16 0.85449 0.85598 0.56597 0.78873

32 0.82879 0.872332 0.54744 0.75412

128 0.76852 0.76271 0.45586 0.68135

Table 6 Accuracy, Jaccard Index, inference time, and size of each model

Model Mean accuracy Jaccard Index Inference time (ms) Size (MB) GPU 
utilization 
(%)

MobileNet 0.853 0.716 7.64 27.9 39.47

U-Net 0.815 0.721 17.7 124 81.96

ResNet18 0.795 0.665 5.28 82.8 51.18

ResNet50 0.838 0.770 7.92 177 56.21
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a mean accuracy of between 0.795 and 0.853, the mini-
mum performance of each model across the four classes 
was the metric used to decide which model would be 
used in the finished pipeline. Despite a larger model and 
longer inference time compared to the three other mod-
els that were tested, ResNet50 was the only network to 
achieve an accuracy of over 50% on the dead leaf mate-
rial during testing (See Figure 5d). ResNet50 was selected 
for the application due to its highest minimum accuracy 
across classes. While mean accuracy and even Jaccard 
index indicates similar performance of each network, we 
determined that ResNet50 provides a good balance of all 
classes, spanning early leaf spot (visual scores 1–5) and 
defoliation (visual scores 6–9) based on the confusion 
matrices.

In addition to simple numeric testing of the network’s 
accuracy on test sets, it was important to perform visual 
inspections of how well the model generalized to new 
data. An example of this qualitative testing can be seen 
in Fig.  5, which shows an image that was passed into 
the preliminary ResNet50 architecture and its result-
ing label. As depicted, semantic labels were applied cor-
rectly, demonstrating proper semantic segmentation of 

the image—this is supported by the confusion matrix. 
Within the image, green represents Healthy plant area, 
red sections are infected lesions, yellow representing 
Dead plants, and black represents Non-Plant or non-dis-
tinguishable area.

All of the associated networks exhibited the lowest 
correct classification on the “Dead” class. ResNet50 saw 
the best result here, with more than half of the Dead pix-
els being properly classified. The other networks all saw 
under 50% proper classification of the Dead classed pix-
els, reinforcing our choice to keep the ResNet50 network 
in the pipeline. This low classification rate was noticeably 
exacerbated in images where there was no green plant 
area - this behavior was seen routinely.

Scoring function
To examine the relationship between our two primary 
classes and visual severity level, a simple data set was 
created. This data set, referred to as the Image Scor-
ing Data Set, was comprised of 475 images captured at 
the end of the growing season on 5 Oct. 2022 at PBRS 
per Table  1. Each of the full-size 12MP images in the 
Image Scoring Data Set was segmented by our network 

Fig. 6 Confusion matrices for the four networks
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and the labels were converted into their relative class 
frequency. Each visual severity level represents a small 
range of possible severities—for example, a score of 4 
is described as having “many spots; mostly on lower 
and middle leaves; disease evident” [11]. This descrip-
tion represents a range of severities before increasing 
to the next score, effectively introducing quantization 
or round-off error to the measurements [48]. To reduce 
error caused by this range, all samples of a specific 
visual severity were averaged to a single value, rep-
resenting the typical infection for each visual severity 
score. Figure 7 shows a plot of the average normalized 
frequency of each of these class counts as compared 
to the visual severity level. The r2 for this fitting can 
be found in Table  7 alongside the root-mean-square-
error (RMSE) when the fit function is applied to all 
images in the Image Scoring Data Set. A fit was per-
formed on the classification frequency to the linear 
function f = p00 + p01sv where f is the normalized fre-
quency, sv is the ground truth visual severity level, p00 
is an initial offset, p01 is the multiplication coefficient 
for the visual severity level. The results of fitting to a 

linear trend as described here can be seen in Table  7. 
A continuous decrease in the Healthy plant frequency 
is observed as the visual severity level increases. We 
also see an increase in Infected plant material and Dead 
plant material as the severity increases. A correlation 
coefficient matrix can be seen in Figure 8, showing the 
correlation coefficients of each pixel class and the visual 
level.

Using the Image Scoring Data Set, the ratios of 
Infected and Dead pixels within the image can be used 
as inputs and converted into a predicted visual score by

where δ is the normalized frequency of Infected pixels, ω 
is the normalized frequency of dead pixels, and sp is the 
predicted visual level. This equation was determined by 
performing a linear regression across all samples in the 

(1)sp = 1.0+ 11.2621δ + 7.6794ω,

Fig. 7 Normalized frequency of Healthy, Infected, and Dead (defoliated) plant material. Vertical error bars represent 1 standard deviation 
from the mean and horizontal error bars represent half of a visual level

Table 7 Parameters of fits for normalized class frequency 
alongside quality of fit metrics

p00 p01
RMSE Average 

severity 
r2

Healthy 
green area

0.984 − 0.081 0.109 0.960

Infected leaf 
area

0.110 0.022 0.0687 0.883

Dead plant 
material

− 0.094 0.059 0.1068 0.883

Fig. 8 Correlation matrix for three class labels and the visual severity 
level
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Image Scoring Data Set. The Healthy classification ratio 
was not needed as it is linearly dependent upon the 
Infected and Dead values.

Using this linear regression equation, we can deter-
mine a new level that is directly comparable to the 
9-point scale. By converting from the normalized fre-
quency of plant classes to the 9-point scale, it can be 
determined how well this image scoring system repli-
cates the results of our visual severity levels. Using the 
Image Scoring Data Set, the visual severity level can be 
estimated from the ratio of Infected and Dead pixels 
1. As mentioned previously, occasionally more images 
were taken per plot, which can lead to an imbalance in 
the scored data set as not all plots were imaged equally. 
To eliminate this possible bias, a random subsampling 
of images was performed. Only three images per plot 
were selected, and each image was passed through the 
scoring pipeline to determine an estimated leaf spot 
severity rating. The root mean square error (RMSE) 
value was calculated to be 0.996. Some of this error can 
be attributed to the 9-point scale’s integer basis com-
pared to the continuous levels of the predicted level. 
While the visual severity levels force a small range of 
infection severities to be equal to a single integer level, 
the predicted level is continuous and will not always 
match up exactly with the original level.

To identify how the number of images and sampling 
area impacts the expected error, a second compari-
son was performed where the predicted level of three 
images per plot, the same randomly sampled images 
described previously, were averaged before being 
passed into the scoring function. The resulting pre-
dicted score was then compared to the ground truth 
measurement for the plot as a whole. This increases 
the area of the plot that is being measured by a factor 
of three. When performing this average across three 
images the RMSE for each plot decrease to approxi-
mately 0.800 from the previous 0.996.

Additionally, non-linear fitting functions were inves-
tigated to determine the suitability of the linear func-
tion. Three support vector machines (SVM) were fit to 
the entire Image Scoring Data Set using the Regression 
Learner from MatLab 2023b. The kernel scale, box 
constraint, and epsilon were all determined dynami-
cally by the Regression Learner application. The Lin-
ear SVM was found to be the highest performing with 
an RMSE of 1.064, followed by the Cubic SVM with an 
RMSE of 1.071, and lastly was the Quadratic SVM with 
an RMSE of 1.081. Due to the performance of the SVM 
models all being slightly worse than the linear model, 
the linear model was selected as the final model for 
converting segmentation values into an estimated leaf 
spot score.

Predicted severity over time
One limitation of our study is that visual severity lev-
els were only conducted at the end of each growing 
season; however, image data were collected at earlier 
time-points with our scoring protocol, our previously 
described Temporal Data Set. A simple hypothesis to 
test is whether the scoring algorithm produces a lower 
average level early on in the season, when leaf spot 
severity should be lower due to the reduced duration of 
the infection period [5]. To quantify trends in the data 
over time, our temporal dataset was used to predict 
the distribution of levels from the UCPS location at 
two different points in time toward the end of the 2022 
growing season (exact dates can be found in Table  1). 
To avoid biasing the data, a random subsampling was 
performed in the cases where more than three images 
were captured of a particular plot, resulting in each of 
our plots in the data set contributing three images to 
the analysis. A graph of normalized frequency versus 
predicted levels for both sampling dates can be seen 
in Fig. 9. The mean predicted level for the early season 
subset was 3.87 where the mean predicted level for the 
late season subset was 4.29, an increase of 0.42 over the 
course of 12 days. A wider spread of levels is observed 
on the late season subset, with the standard deviation 
of 1.33 on the early subset and a standard deviation of 
2.18 on the late subset. Finally, we see a higher maxi-
mum predicted level in the late subset; the maximum 
predicted level being 9.32 in the late subset and 7.71 in 
the early subset. The minimum predicted level in the 
early subset is 1.05 compared to 1.11 in the late subset.

Fig. 9 Histograms of randomly sampled plots at two different points 
in time
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Discussion
Handheld imaging protocol and dataset creation
The first step in this automated leaf spot scoring pipeline 
involved the handheld imaging component. As described 
previously, our imaging personnel used a cell phone 
camera, combined with a simple handheld tool, to per-
form rapid imaging of a random selection of plots. For 
our purpose, we needed to obtain hundreds of images 
across numerous plots in our field trials. Compared to a 
traditional visual scoring, our imaging protocol was more 
time-intensive than traditional expert visual scoring by a 
factor of five. While this limitation may mean that field 
surveys require five times as many personnel to survey at 
the same rate as an individual using traditional field sur-
vey protocols, the training time is reduced with the imag-
ing protocol and scalability is increased. The element of 
human subjectivity present in traditional field surveys is 
greatly reduced using our protocol, which reduces the 
error introduced by having more personnel present in the 
scoring process. An additional benefit is that the raw data 
is stored in the form of captured images, where a tradi-
tional field survey does not store data that can easily be 
revisited if errors are identified.

When the plots were imaged, a minimum of three 
images were taken, two at either end and one in the 
center. This does not fully image the plot and means 
that the entire 6.8 square meter plot must be scored on 
a combined area of 2.7 square meters, a reduction in area 
scored by 60%. As described in the results, an RMSE of 
0.996 visual scores was observed when evaluating the 
individual images in the Image Scoring Data Set, and 
when randomly averaging the results of three images, the 
RMSE was reduced to 0.800. This reduction in error indi-
cates that a higher number of images reduces the error 
seen when evaluating a plot for infection severity. This is 
reinforced by the r2 values when fitting the normalized 
frequency of each class per the severity score, as seen in 
Fig. 7 and Table 7. Here, we see a high r2 ≈ 0.88− 0.95 
for all classes when averaging all images associated with 
a particular severity score. As previously described, the 
discrete nature of the 9-point scale and the continu-
ous output of the scoring function introduces round-off 
errors into the measurements. Representing a range of 
infection severities as an integer value causes unavoid-
able error due to compressing each severity range to a 
single integer. Round-off error in the ground truth meas-
urements leads to an unavoidable error when evaluating 
the performance of the pipeline.

As a limitation of this study, only three images were 
captured per plot, which limits the multi-angle coverage 
of each area and could result in leaf occlusion. This imag-
ing protocol was performed to minimize time spent cap-
turing images and minimize the barrier of entry. More 

advanced image collection protocols are under investiga-
tion by peanut breeding teams around the country, such 
as automated drone image capturing pipelines; future 
work should could investigate the possibility of combin-
ing the pipeline developed here with these systems that 
are capable of more fully imaging plots and minimizing 
leaf occlusion [20]. Future work could examine integrat-
ing the pipeline developed here with such systems to 
achieve more comprehensive plot imaging and reduce 
the impact of leaf occlusion.

Neural network and scoring algorithm
A key neural network metric is how predictably it per-
forms on images associated with specific levels of infec-
tion severity. The network must both classify pixels 
correctly and fit into the overall scoring pipeline. One 
key identifiers of the semantic segmentation network’s 
generalizability is the normalized confusion matrix that 
was generated from the testing (holdout) subset of the 
Neural Network Development Data Set as seen in Fig. 6. 
These results demonstrate the varying degrees of accu-
racy for the four classes. The least important class—Non-
Plant—shows the highest degree of accuracy. The Healthy 
and Infected classes show similar levels of accuracy, with 
accurate classification > 80.0 % of the time. The Dead 
class was frequently mistaken for the Non-Plant class, 
with 40.0% of the Dead pixels being mistaken for Non-
Plant pixels and only 53.8% of the Dead class being iden-
tified correctly. Despite having the second-highest mean 
accuracy across all classes, the ResNet50-based model 
had the worst identification of Non-Plant material of any 
of the four models. The next closest performer in mean 
accuracy was MobileNetV2. However, this model suf-
fered from a low accuracy (66.5%) in identifying infected 
material. ResNet18 performed poorly across almost all 
classes, with Dead pixel classification accuracy of only 
18.5% and Infected pixel classification accuracy of 70.4%. 
The U-Net model performed similarly to ResNet50 on 
both the Healthy and Infected classes, and even out-
scored ResNet50 in regards to the Non-Plant class, but 
suffered from a low accuracy of 34.9% on the Dead class, 
indicating that it may struggle in identifying one of the 
key classes to our scoring pipeline. Finally, the Jaccard 
index, shown in Table 6, was another key metric for suc-
cess when evaluating the networks tested for developing 
our pipeline. The ResNet50 model scored the highest Jac-
card Index of the four networks created. While the mean 
accuracy was slightly lower than the MobileNet-based 
model, the higher Jaccard Index indicated that the labels 
produced by the ResNet50 model were more similar to 
the semantic labels created for testing compared to the 
labels produced by any other model. The Jaccard Index 
is based on the overlapping area of the labels rather than 
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a raw accuracy of correctly applied labels; this behavior 
means the metric is less impacted by imbalanced datasets 
than the overall accuracy metric, making it key to evalu-
ating the performance of the trained neural network [49].

Because many other damage detection pipelines treat 
damage as a singular class rather than differentiating 
between different classifications of damage, the networks’ 
ability to differentiate between damage to the canopy in 
the form of infected lesions and dead plant material was 
of key interest [50]. In the ResNet50 model that was cho-
sen, Infected pixels were misclassified as Dead 5.7% of 
the time, and Dead pixels were misclassified as Infected 
1.6% of the time. Other models also showed a low mis-
classification rate between the two different damage clas-
sifications. The ResNet18 model for example showed 
no misclassification where Infected was mislabelled as 
Dead, and only 3.6% of Dead pixels were misclassified as 
Infected; the U-Net and MobileNetV2 also showed low 
misclassification rates between Infected and Dead, as 
seen in Fig.  6. These results are indicative that the four 
models tested are capable of differentiating between the 
types of damage seen in our field trials, implying suit-
ability for these networks in multi-class classification 
tasks across different timespans. Future work may focus 
on developing pipelines capable of detecting and scoring 
additional types of damage in peanut, to allow for a more 
complete tool.

We saw a small level of defoliation that was present 
even at low levels of severity infection. Referring to Fig. 6, 
we observed that Non-Plant was mistakenly for Dead 
plant material 2.5% of the time. The average frequency of 
Dead plant material in an image associated with a level 1 
severity infection was 0.03, or approximately 3% of pix-
els classified as plant material. The standard deviation of 
our Dead pixel frequency from images associated with a 
level 1 infection was only 0.01, or 1%. It is believed that 
much of this remaining error in Dead classified pixels can 
be attributed to misclassification by the neural network; 
the confusion matrix seen in Fig. 6 shows that 40% of the 
Dead pixels in the holdout set were misclassified as Non-
Plant. Much of the Non-Plant was soil, which indicated 
that many of our Dead pixels were mistaken for soil or 
other background material. Despite the misclassifica-
tion, the dead class showed a strong linear relationship 
with the visual ground truth score, as shown in Fig.  7. 
The averaged dead classified pixel fit demonstrated an 
r2 of 0.883 and an RMSE of 0.11 as detailed in Table  7. 
This indicated that, while misclassification on the full 
Score Set may be higher than that of the test subset 
from the Neural Network Development Data Set, it was 
low enough and consistent enough for use in the scor-
ing pipeline. This predictable behavior was reinforced by 
explicitly quantifying the Healthy class’s linearity, where 

the average fitting function had an r2 of 0.960 when pre-
dicting the visual score as seen in Table  7. The RMSE 
values were on the order of magnitude of 0.1, indicating 
a variance of almost 10% of the pixels within an image 
versus the linear function’s prediction. Given that each 
severity score represents a range of infection severity, 
this range of possible outputs within a predicted score 
is to be expected. A high correlation coefficient between 
the visual score and the healthy number of pixels, with a 
correlation coefficient of − 0.81. It should be noted that 
the three normalized classification values are linearly 
dependent on one another; the healthy pixel value is 
equivalent to 1− δ − ω , so while the Dead and Infected 
classes suffered from a lower correlation, the combined 
sum of the two provided a strong correlation to the vis-
ual severity score that was equivalent to the healthy class 
score.

The overall pipeline had an RMSE of 0.996 visual scores 
when using individual images and 0.800 visual scores 
when using three images per plot. The average error for 
an image will be just under one level of severity on the 
9-point scale, while imaging more of the plot and averag-
ing the scores of several images can reduce the error to 
below one severity level, indicating the suitability of the 
pipeline.

The pipeline includes an intermediary step to extract 
ratios of Healthy, Infected, and Dead plant regions. While 
the 9-point scale is used by NC State’s breeding program, 
other scales, such as that of Chiteka et al. have been his-
torically applied [6, 11, 20]. If the breeding community 
adopts a new scale, the neural network can still be used, 
requiring only adjustments to the scoring function to 
accommodate the new severity standard.

Predicted score over time
The randomly sampled scores over time served as a 
demonstration of the pipeline’s scalability. Given this 
pipeline’s purpose as a tool for monitoring severity in 
peanuts, it is important to show that the pipeline can be 
used not just to score at the end of field trials (when scor-
ing would normally be done), but also as a tool to moni-
tor the severity’s progression over time, which impacts 
yield [5]. Using the Temporal Data Set, the early season 
subset demonstrated a significantly lower maximum pre-
dicted score on individual images than the late season 
subset—a maximum score of 7.71 versus 9.32, respec-
tively. A higher mean single image score was also seen, 
with the mean increasing from 3.87 to 4.29—an increase 
of 0.42 in the predicted visual score between the two 
subsets. The late-season subset also exhibited a higher 
standard deviation compared to the early-season data set 
of 2.18 versus 1.33, respectively, which indicated that the 
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spread of predicted severities increased as the growing 
season progressed.

While these observations aligned with our expecta-
tions, the limited number of sampling dates makes it 
difficult to draw definitive conclusions about the sensi-
tivity of our pipeline to small changes in the severity of 
the infection over time. However, such a capability would 
allow for the detection of increasing severities over time 
and would enable recurring monitoring of leaf spot pro-
gression during field trials—offering a new dimension 
of analysis for peanut breeding programs. While future 
studies—which capture visual score data at different 
times of the year—will help to further justify this in the 
future, these results indicated that capturing a wider 
range of scores across a larger span of time should be 
possible using this pipeline.

Conclusion
This study successfully achieved the main objective of 
developing an automated peanut leaf spot severity scor-
ing pipeline to augment the subjective visual severity 
scale commonly used in peanut breeding programs. By 
employing a ResNet50 architecture, a machine learning 
model was developed that provides a reliable method 
to measure the infected and defoliating regions of pea-
nut, allowing for an objective determination of infection 
severity. The significance of our peanut scoring pipeline 
lies in its potential to overcome the limitations of human 
subjectivity and variability associated with manual scor-
ing methods. By automating the scoring process, we 
ensure consistent and reliable results across different field 
trials, facilitating collaboration and enabling researchers 
to compare findings accurately. This pipeline serves as a 
valuable tool for peanut breeders and scientists, offering 
a standardized approach to scoring and monitoring leaf 
spot severity in peanuts.

Moreover, our automated system opens avenues for 
future collaboration and research. By eliminating the 
influence of human subjectivity, researchers can confi-
dently compare results, exchange data, and validate find-
ings across different breeding programs. This promotes 
transparency and efficiency in peanut research, ulti-
mately contributing to the development of improved pea-
nut varieties and disease management strategies.

In conclusion, our peanut scoring pipeline provides a 
reliable and objective approach to assess leaf spot sever-
ity in peanuts. By integrating automated image analysis 
and machine learning techniques, we offer a valuable tool 
for peanut breeders and researchers, improving the effi-
ciency, consistency, and accuracy of scoring processes. 
The pipeline has the potential to revolutionize peanut 
breeding programs and contribute to advancements in 
disease management strategies, ultimately benefiting the 

agricultural community and ensuring the sustainable 
production of disease resistant peanut.
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