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A compact deep learning approach 
integrating depthwise convolutions and spatial 
attention for plant disease classification
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Abstract 

Plant leaf diseases significantly threaten agricultural productivity and global food security, emphasizing 
the importance of early and accurate detection and effective crop health management. Current deep learning 
models, often used for plant disease classification, have limitations in capturing intricate features such as texture, 
shape, and color of plant leaves. Furthermore, many of these models are computationally expensive and less suitable 
for deployment in resource‑constrained environments such as farms and rural areas. We propose a novel Lightweight 
Deep Learning model, Depthwise Separable Convolution with Spatial Attention (LWDSC‑SA), designed to address 
limitations and enhance feature extraction while maintaining computational efficiency. By integrating spatial 
attention and depthwise separable convolution, the LWDSC‑SA model improves the ability to detect and classify plant 
diseases. In our comprehensive evaluation using the PlantVillage dataset, which consists of 38 classes and 55,000 
images from 14 plant species, the LWDSC‑SA model achieved 98.7% accuracy. It presents a substantial improvement 
over MobileNet by 5.25%, MobileNetV2 by 4.50%, AlexNet by 7.40%, and VGGNet16 by 5.95%. Furthermore, to validate 
its robustness and generalizability, we employed K‑fold cross‑validation K=5, which demonstrated consistently high 
performance, with an average accuracy of 98.58%, precision of 98.30%, recall of 98.90%, and F1 score of 98.58%. These 
results highlight the superior performance of the proposed model, demonstrating its ability to outperform state‑
of‑the‑art models in terms of accuracy while remaining lightweight and efficient. This research offers a promising 
solution for real‑world agricultural applications, enabling effective plant disease detection in resource‑limited settings 
and contributing to more sustainable agricultural practices.
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Introduction
Agriculture is the backbone of human society, providing 
essential food, economic support, and raw materials for 
industries such as textiles and biofuels. Additionally, it 
plays a vital role in sustaining biodiversity and managing 
natural resources, contributing to economic stability and 
environmental sustainability. Plant diseases threaten 
agricultural productivity, leading to substantial financial 
losses and food security challenges worldwide. The 
early detection and management of plant diseases are 
essential to mitigate these impacts. Traditional methods 
for plant disease identification, such as expert visual 
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inspection and laboratory-based techniques, have 
been widely used for decades. While effective in some 
instances, these conventional methods are often labor-
intensive, time-consuming, and prone to human error. 
Furthermore, they may fail to detect diseases early, 
limiting interventions and increasing the risk of disease 
spread. These limitations underscore the need for more 
advanced, automated solutions to enhance the precision 
and efficiency of disease diagnosis in agricultural 
practices. It is a hot topic for researchers to detect and 
classify plant diseases to prevent crop loss and enhance 
food security. Convolutional neural networks (CNNs) 
have gained attention for their ability to detect and 
classify plant diseases from images of leaves accurately 
[1]. Spatial attention empowers the model to concentrate 
on pertinent regions within the input image, augmenting 
its ability to discern discriminative features [2]. The basic 
deep learning model Convolutional Neural Network 
(CNN) is used to classify plant leaf disease in detail in 
this review article [3].

Furthermore, CNNs are recognized for their efficacy 
in modeling intricate processes and conducting pattern 
recognition, particularly in applications dealing with 
substantial volumes of data, such as image pattern 
recognition [4]. A system based on Convolutional Neural 
Networks (CNNs) was introduced for the automated 
recognition of plants, explicitly using leaf images [5]. 
In [6], the author developed a robust neural network 
to successfully identify three distinct legume species 
by analyzing the morphological patterns of leaf veins. 
For the comparative analysis of two well-established 
CNN architectures in identifying 26 plant diseases [7]. 
Using an open database of leaf images from 14 different 
plants, the researchers achieved up to 80% success rates 
in automated identification [8]. However, the limitation 
was the exclusive use of images from experimental 
setups, which needed more representation of actual 
cultivation field conditions. To address a similar objective 
by developing a methodology for plant disease detection 
through leaf images, a comparable amount of internet-
sourced data, with a smaller set of diseases in different 
plants, must be used. Success rates for their models 
ranged from 91% to 98%, contingent on the testing data. 
For the performance comparison between conventional 
pattern recognition techniques and CNN models for 
plant identification, using three diverse databases 
containing a limited number of images depicting entire 
plants and fruits or plant leaves [9].

Although some approaches have successfully 
recognized plant diseases, these processes require 
manual feature extraction, which can be complex and 
subjective. In this situation, it is difficult to identify the 
most reliable feature set. Traditional algorithms for 

recognizing plant leaf diseases have substantial hurdles 
due to the complicated concerns associated with plant 
diseases, which require detailed aspects of texture, 
shape, and color. This study proposes a lightweight 
deep learning architecture to address the challenges 
of multi-type detection of plant leaf diseases. Spatial 
Attention and Depthwise Separable Convolution are 
critical components of the proposed model. Depthwise 
Separable Convolution is a technique that improves 
model efficiency by separating spatial and depthwise 
convolutions, reducing the number of parameters and 
computation costs. On the other hand, Spatial Attention 
allows the model to focus on specific regions within the 
input image, enhancing its ability to capture essential and 
distinctive features of plant leaves. The combination of 
DWSC and SAM is designed to balance computational 
efficiency and diagnostic accuracy, addressing the 
constraints of real-world agricultural settings where 
resources are often limited. To ensure a robust and 
unbiased evaluation of the model, K-fold cross-validation 
is a reliable technique for assessing model performance. 
By partitioning the dataset into multiple folds and 
iteratively training and validating across these folds, the 
methodology ensures that all data points contribute to 
both training and validation. This minimizes the influence 
of random data splits, comprehensively evaluating the 
model capabilities. The novelty of this study lies between 
DWSC and Spatial Attention, which has not been widely 
explored for plant disease detection. While DWSC 
ensures computational efficiency, the spatial attention 
module refines feature extraction, allowing the model to 
achieve higher accuracy and robustness than traditional 
CNNs. This combination enables the LWDSC-SA model 
to outperform existing accuracy, precision, and recall 
methods while maintaining a lightweight architecture. 
The proposed method bridges the gap between high 
performance and practical applicability, making it a 
promising solution for automated plant disease detection 
in agriculture. The main contributions of this research 
are as follows:

• A novel lightweight, deep-learning model called 
LWDSC-SA has been developed to classify plant leaf 
diseases efficiently.

• The model incorporates multiple parameters and 
computational enhancements to improve overall 
classification efficiency, ensuring faster and more 
accurate disease detection.

• The LWDSC-SA model focuses on specific regions 
or patches of the leaf that are most relevant to 
disease classification, significantly reducing the 
computational cost. By concentrating on these 
targeted areas, the model enhances efficiency without 
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compromising accuracy, leading to faster and more 
resource-efficient disease detection.

• The LWDSC-SA model was trained on the original 
plant leaf dataset, utilizing six standard data 
augmentation techniques for small datasets: random 
horizontal and vertical flips, central cropping, and 
adjustments in contrast, saturation, and brightness.

• The proposed LWDSC-SA model performance 
was evaluated using seven key metrics: accuracy, 
error rate, precision, recall, sensitivity, specificity, 
and F1-score. The results were benchmarked 
against six state-of-the-art deep learning image 
classification models: MobileNet, MobileNetV2, 
AlexNet, VGGNet-16, ResNet-50, and Inception 
V3, demonstrating superior performance in all 
categories.

• The model robustness and generalization capabilities 
were validated using K-fold cross-validation (K=5), 
providing a more thorough and reliable evaluation 
compared to traditional single data splits.

The article is structured as follows: Introduction section 
offers a brief introduction to leaf diseases, and Related 
work section reviews related work. The proposed model 
is outlined in Proposed methodology section , while 
Experiment setup and validation analysis section details 
the experimental setup and Results and discussion results 
and findings. The article concludes in Conclusion section.

Related work
Plant disease classification is a crucial area of research 
due to its significant impact on agricultural productivity 
and food security. In recent years, integrating deep 
learning (DL) techniques has shown promising results 
in the accuracy and efficiency of plant disease detection 
systems. This section provides a comprehensive overview 
of relevant studies on plant disease classification, 
particularly those utilizing Depthwise Separable 
Convolution (DSC) and Spatial Attention mechanisms.

According to [10], the literature demonstrates the 
acceptability of many models in diagnosing various 
plant diseases. Using PlantVillage data created a unique 
architecture by integrating squeeze and excitation (SE) 
modules with deep learning [11]. In this architecture, 
the author uses pooling instead of a fully connected 
layer, improving the classification accuracy of 57.3 M 
parameters by 91.7%. In [12], the author found that 
the pre-trained CNN models B4 and B5, which were 
previously in use, outperformed additional models 
that were thought to be accurate CNN models. But 
B4 has 19 M parameters, and B5 has 30 M parameters. 
Therefore, more computation time is needed to increase 
the available resources. Several recent studies also use 

the attention mechanism to improve the effectiveness of 
various DL frameworks.

A study by [13] focused on the ResNet architecture for 
tomato plant disease diagnosis. They were able to detect 
ten tomato plant illnesses with 98% accuracy. In their 
Dense-Net CNN design, [14] integrated channel and 
spatial attention modules and substituted the Depthwise 
separable convolution operation. The datasets obtained 
from PlantVillage and their collection evaluated the 
usefulness of their method for diagnosing illnesses in 
maize plants. In the study, the author describes their 
gathered dataset, and the PlantVillage dataset model 
achieved 95.86% and 98.5% accuracy. created the RIC-
NET model [15] utilizing the Inception and Residual 
blocks. Advancements in plant disease detection 
using machine learning (ML) and deep learning (DL), 
highlighting datasets, methodologies, challenges, 
and future directions [16]. A convolutional Block 
Attention Module (CBAM) was employed to improve 
the performance of the RIC-NET model. The authors’ 
model detected infections in tomato, corn, and potato 
plants with 99.55% accuracy. Author of [17] describes a 
novel architecture called Muti-Dilated-CBAM-DenseNet 
(MDCDenseNet) to detect maize plant diseases in 
farmlands. With maize plant leaf photos taken from 
Northeastern Agricultural University fields in China, 
their suggested model achieved 98.84% testing accuracy 
[18]. They also used the PlantVillage dataset to test the 
data and discovered that the SECNN model obtained 
99.28% accuracy. Pandey and Jain [19] put forth a unique 
attention-based learning paradigm to enhance the CNN 
models to identify plant disease from leaf images. Ang 
et al. [20] introduced a Deep Hash Convolutional Neural 
Network (DHCNN) to enhance large-scale plant leaf 
disease retrieval. By leveraging collision-resistant hashing 
techniques and deep learning, the model achieved high 
precision 99.5% and F1-scores 99.58% on multi-plant 
disease datasets, demonstrating robustness and efficiency 
in retrieving highly similar plant disease images [21]. On 
the PlantVillage dataset, the accuracy of their suggested 
model was 99.93%. Using the DenseNet-121 CNN 
architecture operation, [22] achieved 98.17% accuracy 
in identifying plant diseases. Table  1 summarizes the 
findings from various studies, broken according to the 
number of classes, images, networks, and accuracy of the 
dataset given for the studies.

Several studies have employed a variety of machine-
learning algorithms and extensively classify plant 
diseases based on leaf images. Specifically, CAS-CNN 
and CAS-MODMOBNET models were applied in the 
cashew disease to evaluate the model performance 
with 99.8% accuracy  [39]. Moreover, in  [40], the author 
assessed modified transfer learning models (VGG19, 
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NASNetMobile, DenseNet169) and state-of-the-art 
TL models (ResNet50V2, InceptionV3, Xception) for 
detecting potato leaf diseases. The modified DenseNet 
outperformed all models, achieving up to 99% accuracy 
and high MCC, CKC, and AUC-ROC scores. This 
study proposes the T-Net model, combining CNNs and 
transfer learning (VGG-16, Inception V3, AlexNet), 
achieving 98.97% accuracy for tomato disease detection, 
offering a rapid and reliable solution for farmers  [41]. 
In a separate investigation involving tomato plants, a 
Support Vector Machine with a kernel-based function 
was applied to perform binary classification on 200 
RGB images, achieving an impressive accuracy of 91.5% 
in distinguishing between two types of diseases [42]. 
Another robust model was developed for soybeans, 
capable of identifying, classifying, and quantifying a 
diverse range of foliar stresses. This model was trained on 
a substantial and varied dataset, with approximately 600 
unseen test samples per class. The model demonstrated 
an overall classification accuracy of 94.13% [43]. 
However, these studies have several limitations, such as 
small and biased datasets and the diversity of the these 
datasets are not explicitly addressed. Furthermore, 
generalization of these models are still questionable 
as the synthetic samples fail to simulate the real-world 
scenarios, which leads towards over-fitting and poor 
generalization of these models and these models cannot 
be considered robust and resilient for unseen plant leaf 
disease detection scenarios. In addition, these traditional 

deep learning models are computationally expensive, 
potentially limiting their deployment on edge devices 
for real-time plant leaf disease detection. Therefore, a 
robust and lightweight approach is required to overcome 
aforementioned limitations for enhancing the plant leaf 
disease detection and classification. In this research 
study, a lightweight compact deep learning approach 
is proposed using depthwise separable convolutional 
and spatial attention techniques explicitly incorporated 
into MobileNet architecture initially introduced by 
Howard et al. in 2017 [44]. Our proposed approach uses 
depthwise separable convolutions consisting of depthwise 
and pointwise convolutions. In depthwise convolution, 
kernels from each filter convolve with individual input 
channels, whereas in pointwise convolutions, the 
resulting output channels are merged. This module 
generates a spatial attention map by considering the 
inter-spatial relationships present in the features. The 
spatial attention module helps the system in focusing 
on relevant spatial features, leading to a significant 
performance improvement while mitigating overfitting. 
Furthermore, our proposed approach architecture 
require less computational resources compared to 
the DenseNet, InceptionV3 and other tradtional DL 
architectures. In addition, our proposed study attempted 
to preprocess plant leaf images by incorporating 
photometric adjustments and geometric transformations 
in the augmentation process to mimic the variations 
and challenges that occur in real-world scenarios. In 

Table 1 A review of existing research and studies related to plant disease identification

Ref. Dataset Classes Images Aug Network Acc%

[23] PlantVillage 14–36 54,309 Yes VGG16 97.82

[24] PlantVillage 06–10 54,306 Yes Xception 97.35

[25] Collected 15‑6 4483 Yes Modified CaffeNet 96.30

[26] Collected 2‑1 5808 Yes Custom 95.83

[27] Collected 9‑1 1426 Yes Two stage CNN 93.30

[28] PlantVillage 20‑01 9679 Yes DLMC‑Net 93.46

[29] Collected 4‑1 1053 Yes Modified AlexNet 97.62

[30] PlantVillage 3‑1 3700 Yes Modified LeNet 92.88

[31] PlantVillage
Collected

42‑12 79,265 Yes ResNet152 90.88

[32] Collected 7‑1 7905 Yes Custom 90.16

[33] Collected 9‑1 5000 Yes R‑FCNN, ResNet50 85.98

[34] PlantVillage 38‑14 54,323 Yes InceptionV3 95.30

[35] PlantVillage
Collected

56‑14 2567 Yes GoogleNet 94.00

[36] Collected 6‑1 6029 Yes DenseNet+RF 79.59

[37] Collected 10‑1 500 No Custom 95.48

[38] PlantVillage
Collected

10‑1 17,929 N/A F‑CNN, S‑CNN 97.60
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this way, we validate the proposed lightweight approach 
based on diverse dataset that simulate the real-world 
variations. The augmentation process simulates real-
world variations to make the proposed approach more 
robust and resilient to efficiently cope with the unseen 
plant leaf disease detection scenarios. Moreover, we have 
compared the performance of our proposed approach 
with the state-of-the-art models to highlight the 
empirical effectiveness of our research study.

Proposed methodology
This research proposes a framework for detecting 
plant leaf disease. The study aims to create an accurate 
and computationally less expensive learning model for 
disease diagnosis. This work proposes two different 
deep architectures for detecting disease in plant leaves. 
The first architecture integrates depthwise separable 
convolutional, and the second combines spatial attention 
architecture. Figure  1 represents a workflow for a plant 
disease identification system using machine learning. It 
starts with collecting plant images, then pre-processing 
and data augmentation to train a model. The system 
employs a Generative Adversarial Network and transfer 
learning for effective learning. After training and 
validation, the model classifies new images and updates 
the database, enhancing its accuracy over time.

Image dataset
The PlantVillage dataset, which features 55000 images 
and 38 classes, including 14 plant species, is used in this 
study. There are 26 classes corresponding to unhealthy 
plants and 12 classes corresponding to healthy plants; 
an additional class identifies 1,143 background images, 
resulting in 55000 images. Figure  2 displays a selection 
of 15 plant-disease pairs and healthy pairs randomly 
chosen. The author in [45] curated this dataset, 
featuring colored images of varying dimensions. To 
enhance the dataset, Geetharamani and Pandian [46] 
executed 6 augmentation methods and made both the 
original and augmented datasets publicly available; their 
augmentation strategy focused on increasing the sample 
size of classes with fewer than images through various 
augmentation techniques, while no modifications were 
made to images in other classes. Subsequently, the 
augmentation application resulted in a dataset expansion 
to 87000 images. The dataset is divided into training, 
validations, and test sets. For the study, the original and 
augmented datasets aim to enhance the performance of 
deep neural networks.

Data preprocessing
In this study, several key steps were involved in the data 
preprocessing. Initially, the input, the dataset, and the 

Fig. 1 A comprehensive flowchart illustrating the systematic steps for identifying and diagnosing plant leaf diseases. The process includes 
image acquisition, dataset preprocessing (removing duplicates, resizing, and augmentation), training and validation using pre‑trained models 
with optimized configurations, and final evaluation through performance metrics such as accuracy, precision, recall, and F1‑score
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trim function control the dataset size and resize the 
images per class. This function regulated the sample 
count within 38 samples. Table 2 illustrates select images 
in the plant leaf disease dataset. Data augmentation 
is applied to extend the dataset by applying various 
photometric adjustments and geometric transformations 
to the original images. These photometric adjustments 
and transformations in augmentation process ensures 
to simulate a broad spectrum of possible real-world 

variations and enhance diversity in the synthetic dataset. 
Furthermore, we have considered environmental factors 
such as lighting which is simulated via random contrast in 
the augmentation process. In addition, these photometric 
adjustments and geometric transformations applied 
in the augmentation process to make our proposed 
model more resilient and adaptable to unseen scenarios, 
reducing overfitting and improving generalization to 
real-world data. The following photometric adjustments 

Table 2 Description of the plant leaf disease dataset, including class names, the number of images per class, and the distinction 
between healthy and diseased plant samples

Classes Class name Images Classes Class name Images

0 Tomato_Late_blight 1851 19 Peach_Bacterial_spot 1838

1 Tomato_healthy 1926 20 Apple_rust 1760

2 Grape_healthy 1692 21 Tomato_Target_Spot 1827

3 Huanglongbing 2010 22 Pepper,_bell_healthy 1988

4 Soybean_healthy 2022 23 Grape_Leaf_blight 1722

5 Squash_Powdery 1736 24 Potato_Late_blight 1939

6 Potato_healthy 1824 25 Tomato_mosaic_virus 1790

7 Corn_Blight 1908 26 Strawberry_healthy 1824

8 Tomato_Early_blight 1920 27 Apple_healthy 2008

9 Tomato_leaf_spot 1745 28 Grape_Black_rot 1888

10 Corn_Cercospora 1642 29 Potato_Early_blight 1939

11 Strawberry_Leaf_scorch 1774 30 Cherry_healthy 1826

12 Peach_healthy 1728 31 Corn_rust 1907

13 Apple_scab 2016 32 Grape_Esca 1920

14 Tomato_Yellow_Leaf 1961 33 Raspberry_healthy 1781

15 Tomato_Bacterial_spot 1702 34 Tomato_Leaf_Mold 1882

16 Apple_Black_rot 1987 35 Tomato_Spider 1741

17 Blueberry_healthy 1816 36 Pepper_bell_spot 1913

18 Cherry_Powdery_mildew 1683 37 Corn_healthy 1859

Fig. 2 Sample original and augmented plant leaf images showcasing various disease categories and healthy leaves. The left section presents 
original images, while the right section displays corresponding augmented images generated through flipping, brightness adjustment, contrast 
adjustment, cropping, rotation, and scaling
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and geometric transformations are applied in the 
augmentation process such as:

• Random Contrast: Accounts for differences in 
sharpness and intensity.

• Horizontal and Vertical Flipping: Generates mirrored 
versions of images to introduce positional variations.

• Random Cropping: Extracts sub-regions to ensure 
the model recognizes disease features at different 
scales.

• Rotation and Scaling: Applies random rotations and 
scaling to emulate varying leaf orientations and sizes.

The dataset, including original and augmented images, 
was randomly split into three subsets. Training Set 90% 
This set is used for model learning and weight updates. 
Validation Set (7%): Employed for hyperparameter 
tuning and early stopping to prevent overfitting. Test 
Set (3%): Reserved exclusively for evaluating the final 
model performance on unseen data. Image Resizing 
and Normalization: All images are resized to the input 
dimensions of the respective models: 227 × 227 pixels 
for AlexNet, 224 × 224 pixels for ResNet50, VGG16, 
MobileNet, and LWDSC-SA. 299 × 299 pixels for 
Inception V3, Images were normalized by dividing 
pixel values by 255 to scale them within the range [0,1], 
ensuring compatibility with deep learning frameworks. 
For the evaluation model performance, K-fold cross-
validation was employed. The dataset was divided into 
five equally sized folds, each serving as a validation set, 
while the remaining four were used for training. This 
iterative process was repeated five times, allowing every 
data point to be used for training and validation. K-fold 
cross-validation minimizes the impact of random splits 
and provides a more reliable assessment across the entire 
dataset. Table 2 provides an overview of selected sample 
images in the plant leaf disease dataset, showcasing 
healthy and diseased leaves across various categories.

Model architecture
The proposed model is based on the depthwise 
separable convolutional neural network. It integrates 
spatial attention as a critical element into MobileNet, as 
explained by Howard et al. [44].

MobileNet
The study employs an improved version of MobileNet by 
adding extra layers to the existing MobileNet architecture 
[47]. Due to the limited available data and associated 
computational costs, transfer learning techniques 
help reduce the duration of training. MobileNet, a 
sturdy pre-trained model trained on the ImageNet 
dataset, comprises 28 convolution layers that function 

as the fundamental feature extraction component. 
One of its unique features is the use of depth-wise 
separable convolutions, which are nine times more 
computationally efficient than standard convolutions. 
MobileNet, known for its lightweight architecture and 
efficiency, has been widely used for image classification 
tasks, including plant disease detection. Recent studies, 
such as [39], demonstrated that MobileNet achieves high 
accuracy with minimal computational resources, making 
it suitable for real-world deployment in resource-limited 
environments.

The MobileNet method involves factorizing a regular 
convolution into two components: a 3 × 3 Depthwise 
convolution and a 1 × 1 pointwise convolution. The 
model optimizes its size and speed by incorporating 
width and resolution multipliers. With this approach, a 
smaller and faster model can be developed, although it 
will lose moderate accuracy. Figures  3 and 4 depict the 
internal components of the architecture. It incorporates 
MobileNet to enhance the specific features of the data. 
Two max pooling layers and a global average layer are 
integrated, along with three batch normalization and 
dropout layers. ReLU serves as the activation function 
across four dense layers. The classification layer employs 
SoftMax, concluding with a final, lighter, dense layer. This 
composite design aims to optimize feature extraction, 
regularization, and classification within the framework 
while leveraging the efficiency of MobileNet.

Depthwise separable convolution
Depthwise Separable Convolution (DWSC) is an 
efficient form of convolution that factorizes a standard 
convolution into two sequential stages to reduce 
computational complexity and enhance performance. 
This two-step process comprises Depthwise Convolution 
(DWC) and Pointwise Convolution (PWC), as proposed 
by Sifre and Mallat [48].

Depthwise Convolution (DWC): In this stage, a filter 
is applied independently to each channel of the input 
feature map to extract spatial features. It significantly 
reduces computation compared to conventional 
convolutions. Mathematically, DWC can be expressed as 
Eq. 1.

Here, H and L represent the height and width of the 
image, respectively. u, v represents the index position of 
the image, Wd is the corresponding filter weights, and y 
denotes the input image.

Pointwise Convolution (PWC): The output of DWC 
is then processed by a 1 × 1 convolution across all 

(1)

DepthwiseConvolution
(
Wd , y

)
(u,v) =

H ,L∑

h,l
Wd(h,l) × y(u+h,v+l)
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channels. PWC combines the spatial features obtained 
from DWC, enabling interaction between channels 
The final outputs of PWC are considered the operation 
results of DWSC, as expressed in Eq. 2.

(2)PointhwiseConvolution
(
Wp, y

)
(u,v) =

M∑
m

Wm × y(u,v,m)

Fig. 3 MobileNet‑based model architecture with input preprocessing, depthwise separable convolutions, dense layers, dropout regularization, 
and output layer for plant disease classification

Fig. 4 Detailed flow of depthwise separable convolutions, pointwise convolutions, and feature map generation. The architecture efficiently 
reduces computational complexity while maintaining performance, with feature maps transitioning from 224× 224× 3 to 1× 1× 1000 , ultimately 
classified using the SoftMax layer
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Where, Wp filter weights for pointwise convolution and 
M Number of the input channels.

Combined DWSC Operation The final output is the 
combination of the two steps and is defined as Eq. 3:

DWSC reduces computational costs by separating spatial 
feature extraction (DWC) and channel-wise feature 
integration (PWC). This technique has been widely 
adopted in lightweight Convolutional Neural Networks 
(CNNs) such as MobileNets [44], Xception, ShuffleNet, 
and EfficientNets, where computational efficiency is 
critical.

Spatial attention
The Spatial Attention Mechanism refines the feature 
maps by highlighting spatially important regions while 
suppressing irrelevant background information. It 
enables the network to focus on disease-specific regions 
of plant leaves, improving accuracy in complex scenarios 
involving texture, shape, and color variations. Input 
Representation: Let F represent the input feature map: 
F ∈ R

C×W×H where C, W, and H are the dimensions of 
channel, width, and height.

Spatial Attention Map: SAM generates a 2D attention 
map Ms by combining the outputs of Max Pooling and 
Average Pooling applied across the feature map F. SAM 
concatenates the final feature from channel attention 
and performs a convolution operation using a regular 
convolution layer, resulting in the spatial attention map 
computed by Eq. 4.

Where, f 7×77× 7 convolution kernel applied to pooled 
features, ξ Sigmoid activation function, * Element-wise 
multiplication.

Improving Features : The spatial attention map Ms 
is multiplied with the original input F to produce the 
refined attention-weighted features. The comprehensive 
process of the attention module is expressed as Eq. 5.

Here, the multiplication highlights the spatially relevant 
features, enhancing the model’s ability to detect disease 
regions in plant leaves.

SAM operates sequentially, where channel-wise and 
spatial-wise attention are computed consecutively. This 
sequential approach has been shown to achieve better 
performance in practical applications [49].

(3)

(
Wp,Wd , y

)
(u,v) = PointhwiseConvolution(u,v)(

Wp, DWC(u,v)
(
Wd , y

))

(4)MS(x) = ξ
(
f 7×7([Maxpool(F); Avgpool(F)])

)

(5)F att = SAM(F) = F ∗Ms(F)

Figure 5 visually illustrates the integration of Depthwise 
Separable Convolution (DWSC) and Spatial Attention 
Mechanism (SAM) in the proposed architecture. The 
figure shows The separation of spatial feature extraction 
(DWC) and channel-wise feature integration (PWC) in 
DWSC. The attention map is generated in SAM through 
pooling and convolution operations, followed by the 
input feature map refinement. The combination of DWSC 
and SAM enhances the feature extraction capability of 
the model while maintaining computational efficiency. 
The proposed model achieves high performance with 
lower computational costs by focusing on disease-
relevant regions and reducing redundant parameters. 
Depthwise Separable Convolutions reduce computational 
complexity, while Spatial Attention enhances feature 
interpretability, making the model ideal for low-resource 
agricultural environments. Furthermore,Table 3 presents 
a summary of the proposed model configuration 
parameters.

Furthermore, our proposed approach uses depthwise 
separable convolutions which involve fine-grained 
channel-wise operations, leading to sparse gradient 
updates. In the case of the sparse gradients, AdaGrad 
is efficient option compared to the Adam and SGD. 
Furthermore, AdaGrad ensures stable convergence 
without overshooting for our proposed approach having 
depthwise separable convolutions and spatial attention 
layers. Therefore, AdaGrad maintains a per parameter 
learning rate compared to the SGD, which relies on a 
fixed or manually decayed learning rate. In addition, 
Adam also uses adaptive learning rates by processing 
complex update rules such as momentum terms; 
therefore, it is not aligned with the aim of the depthwise 
separable convolutions to reduce the computational 
overhead as AdaGrad which avoid complex update rules. 
Therefore, AdaGrad is a well-justified choice for our 
proposed approach due to its compatibility with sparse 
gradients, lightweight design principles, and adaptive 
learning capabilities, particularly for architectures 
like MobileNet enhanced with depthwise separable 
convolutions spatial attention modules.

Experiment setup and validation analysis
This section focuses on the experimental setup, model 
performances, and results, providing an in-depth 
analysis of our deep learning models on the dataset. 
The evaluation metrics considered include accuracy, 
precision, recall, and F1 score, offering a comprehensive 
understanding of the models per model. A comparison 
will be drawn between our pre-trained models and the 
LWDSC-SA model, and the outcomes of this research 
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will be visually presented for a more precise illustration 
of the achieved results.

Experimental setup
Table  4 provides detailed information about the 
hardware and software configuration used for running 
the experiments and training the model. The central 
processing unit (CPU) is an Intel Core i7-8700, operating 

at a base frequency of 3.20 GHz, offering strong multi-
core performance for processing tasks. The graphical 
processing unit (GPU) is an NVIDIA GeForce GTX 1060 
with 3GB of memory, ideal for handling computationally 
intensive tasks like deep learning. With 32 GB of RAM, 
the machine can handle big datasets and execute intricate 
processes without experiencing performance problems. 
A 500 GB hard drive serves as the storage, which is 
enough for managing data and installing software. It 
operates on a 64-bit operating system optimized for x64-
based processors. The software version used is 22H2, 
which ensures compatibility with the latest tools and 
frameworks needed for model development. This setup 

Fig. 5 Illustrating the integration of Depthwise Separable Convolutional layers and Spatial Attention mechanism in neural networks, showcasing 
enhanced depthwise processing and spatial focus for improved feature extraction and model performance

Table 3 Model configuration parameters

Model configuration settings, including key parameters such as learning rate, 
optimizer, batch size, dropout rate, image size, activation function, and loss 
function. These parameters were optimized to enhance the performance of the 
LWDSC-SA model. Note: The loss function ’SC(cross-entropy)’ refers to Sparse 
Categorical Cross-Entropy, commonly used for multi-class classification tasks.

Type of layer Parameters

Learning Rat (0.001)

Optimizer (AdaGard)

Batch Size (32)

Dropout Rate (0.5)

Image Size (224 x 224)

Activation Function (ReLU)

Loss Function SC(cross‑entropy)

Table 4 Tools and technologies used in the experiments 
conducted in this study

Configuration Item Value

CPU Intel(R) Core(TM) i7‑8700 CPU @ 3.20GHz 3.19 GHz

GPU NVIDIA GeForce GTX 1060 3GB

RAM 32.0 GB

Hard Disk 500 GB

Operating System 64‑bit operating system, x64‑based processor

Version 22H2
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provides an optimal balance of processing power and 
storage for efficient model training and experimentation.

Validation analysis
The confusion matrix is a widely used method for 
evaluating classification models. It provides insight into 
the number of correct and incorrect predictions by 
breaking them into True Positives (TP), True Negatives 
(TN), False Positives (FP), and False Negatives (FN). The 
model primarily aims to maximize TP and TN while 
minimizing FP and FN.

• Accuracy represents the overall effectiveness of the 
model, defined as the ratio of correct predictions to 
the total number of predictions made. It is calculated 
as follows: 

• precision measures the proportion of correctly 
predicted positive observations out of all predicted 
positive observations. It is defined as: 

• Recall, also known as sensitivity, measures the 
proportion of actual positives correctly identified by 
the model. It is calculated as: 

• F1 Score is the harmonic mean of precision and 
recall, balancing the two metrics. It is beneficial when 
the class distribution is imbalanced. The F1 score is 
computed as follows: 

• Specificity Specificity The proportion of correctly 
identified negative observations out of all negatives. 
It is expressed as: 

• Loss expresses the difference between the expected 
and actual results. Standard loss functions for 
classification models include cross-entropy loss, 
which is used to optimize the model during training 
by reducing the difference between predicted and 
actual labels.

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Precision =
TP

TP + FP

(8)Recall =
TP

TP + FN

(9)F1 = 2×
Precision× Recall

Precision+ Recall

(10)Specificity =
TN

TN + FP

Results and discussion
This section analyzes the proposed model performance 
through a series of experiments and evaluations. Starting 
with the Experimental Setup, we describe the technical 
environment and configurations used. The Training 
process is outlined, highlighting the optimization 
strategies and learning dynamics. Finally, the Results 
and Analysis provide a detailed discussion of the model 
performance, including key metrics and comparative 
evaluations against baseline models.

Training
The datasets of PlantVillage, including the original and 
augmented versions. The augmentation techniques 
include random brightness, contrast, flipping, and 
cropping to enhance model generalization and 
robustness during training, divided randomly into 
training, validation, and test sets. The ratio used for 
the division was 90% for the training set, 7% for the 
validation set, and 3% for the test set. The training and 
validation datasets were only utilized for training and 
fine-tuning the model. At the same time, the test set 
was exclusively used to evaluate the model performance 
on samples that were unknown to the model. The study 
used existing DSC-SA models with transfer learning. The 
DSC-SA models were fine-tuned to identify and classify 
all categories in the dataset using pre-trained models on 
the ImageNet dataset to speed up the learning process. 
The last connected layers, which had multiple outputs, 
were changed to 38 to adapt the pre-trained models 
to the problem. All layers of pre-trained models were 
set as trainable. The activation function in the previous 
layer was set to Softmax, and the loss function was set to 
categorical cross-entropy. The early stopping technique 
was used during the training, with a patience value 
of 5 and a minimum change in loss of 1e-3. Since early 
stopping was used, the maximum epoch was not defined 
during model training. The models had already been 
trained using the same optimization method for training 
the ImageNet dataset. The VGG16 model uses the SGD 
optimization method, whereas all the other models use 
the Adam optimization method. The Adam optimization 
method was set to a learning rate of 0.001, while the SGD 
optimization method was set to 0.01. Adam optimizer 
with a learning rate of 0.001 was used for most models 
due to its adaptive learning capabilities, ensuring faster 
convergence. SGD optimizer with a learning rate 0.01 
was used for the VGG16 model el, which benefits from 
SGD larger architectures.

The validation step for all models was set to 1. All 
images in the original and augmented datasets were first 
normalized by dividing by 255 and then resized to the 
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default size accepted by each model. Accordingly, images 
were set to 227 × 227 pixels for AlexNet, 224 × 224 for 
ResNet50 and VGG16, and 299 × 299 pixels for Inception 
V3. Due to hardware limitations, input image resolutions 
were necessarily resized for all models of the MobileNet 
architecture in experimental studies. Figure  6 accuracy 
over epoch and loss of the model.

The maximum input size compatible with the hardware 
resources for the model with the highest parameter 
count was determined to be 224 × 224 pixels. To ensure 
uniform evaluation and fair comparison, the input size 
for all models, including MobileNet and its variants, was 
standardized to 224 × 224, except for AlexNet (227 × 227) 
and Inception V3 (299 × 299) due to their architectural 
requirements. Table  5 summarizes each image’s 
dimensions and corresponding total parameter counts. 
For the training process, a batch size 32 was used for all 
models, as this value balanced computational efficiency 
and resource utilization within the hardware constraints. 
The batch size was chosen to ensure consistent 
conditions across experiments while optimizing memory 
and processing capabilities. Table  6 details the key 
parameters used in the experiments, including image 
sizes, optimizers, and learning rates for each model. 
These standardized configurations ensured reliable and 
reproducible evaluations across all experiments.

Result and analysis
This section presents the results of the model 
evaluations; table 7 shows the average accuracy, recall, 

Fig. 6 Training accuracy and loss accuracy of the model

Table 5 Input image dimensions and total parameter counts 
for various deep learning models used in the study, highlighting 
their computational requirements and architectural differences

Model name Input size Number 
of total 
parameters

MobileNet 224 × 224 5,330,571

MobileNetV2 224 × 224 4,330,571

AlexNet 227 × 227 60,954,656

ResNet50 224 × 224 25,636,712

VGG16 224 × 224 138,357,544

Inception V3 299 × 299 3,851,784

LWDSC‑SA 224 × 224 2,420,615

Table 6 Configuration parameters for deep learning models, including input image size, optimization methods, and learning rates, 
highlighting the setup used for training and evaluating each model

Model name Image size Optimization method L rate

MobileNet 224 × 224 Adam Optimizer (with β1 = 0.9 and β2 = 0.999) 0.001

MobileNetV2 224 × 224 Adam Optimizer (with β1 = 0.9 and β2 = 0.999) 0.001

AlexNet 227 × 227 Adam Optimizer (with β1 = 0.9 and β2 = 0.999) 0.001

VGG16 224 × 224 Stochastic Gradient Descent (SGD) with M = 0.0 0.01

ResNet50 224 × 224 Adam Optimizer (with β1 = 0.9 and β2 = 0.999) 0.001

Inception V3 229 × 229 Adam Optimizer (with β1 = 0.9 and β2 = 0.999) 0.001

LWDSC‑SA 224 × 224 Adam Optimizer (with β1 = 0.9 and β2 = 0.999) 0.001
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specificity, and values for each model based on the test 
datasets. The number of epochs selected for optimal 
performance for each performance criterion is divided 
by the total duration to determine the training time. 
The LWDSC-SA model, a novel approach to plant 
disease identification, introduces unique features that 
make it a promising solution for real-world agricultural 
settings with limited resources. Spatial attention and 
depthwise separable convolution of the model enhance 
the plant leaf images feature for accurate and efficient 
plant leaf disease and effectively address the challenges 
of complex agricultural conditions.

Confusion matrix of FWDSC‑SA model
The proposed Lightweight Depthwise Separable 
Convolution with Spatial Attention (LWDSC-SA) 
model performance across several plant leaf disease 
classes is detailed in the confusion matrix presented 
in Fig.  7. The parallel values in the matrix indicate 
accurate classifications, and each row corresponds to the 
predicted class and each column to the actual class. The 
high values along the diagonal, particularly for classes 
like Tomato_Late_blight (8326 correct predictions), 
Tomato_healthy (13891 correct predictions), and 
Corn_healthy (11887 correct predictions), indicate that 
the model performs exceptionally well in identifying 

Fig. 7 Confusion matrix of all plant leaf disease class
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these classes. These high values suggest the model 
is highly effective at learning discriminative features 
for diseased and healthy plant leaves, leading to high 
classification accuracy.

However, off-diagonal elements also represent 
misclassifications, though these values are relatively 
small compared to the diagonal values. For example, 
Tomato_Late_blight was sometimes misclassified as 
Tomato_Leaf _spot or Tomato_Early_blight , showing 
some confusion between different tomato disease types, 
which could be attributed to the visual similarities 
between these diseases. Despite these occasional 
misclassifications, the overall structure of the confusion 
matrix shows a strong performance, with most off-
diagonal values being close to zero. The color scale, 
which ranges from blue to red, visually emphasizes this 
trend, as the diagonal elements are predominantly red, 
indicating high accuracy. This reflects the robustness 
of the LWDSC-SA model in distinguishing between 
multiple disease categories, even in complex cases where 
the visual differences between diseases may be subtle.

Performance analysis
The proposed Lightweight Depthwise Separable 
Convolution with Spatial Attention (LWDSC-SA) 
model showcases significant improvements over the 
conventional models used in plant disease classification, 
as demonstrated in Table  8. In terms of accuracy, the 
LWDSC-SA model achieved an accuracy of 98.70%, 
which is 5.25% higher than MobileNet (93.45%), 4.50% 
higher than MobileNetV2 (94.20%), 7.40% higher than 
AlexNet (91.30%), and 5.95% higher than VGGNet16 
(92.75%). Compared to the other ideas, the improvement 
in accuracy shows how well the model can identify 
more complex patterns in the dataset, leading to a more 
accurate classification of plant diseases. Moving on to 
precision, the proposed model achieved an accuracy 
of 98.30%, representing a 5.50% increase compared 
to MobileNet (92.80%), 4.55% over MobileNetV2 

(93.75%), 8.10% over AlexNet (90.20%), and a substantial 
6.70% improvement over VGGNet16 (91.60%). This 
improvement in precision indicates that the LWDSC-SA 
model is better at reducing false positives, ensuring that 
it accurately identifies diseased plants while minimizing 
the incorrect classification of healthy plants as diseased.

The recall of the LWDSC-SA model also stands out, 
reaching 99.10%. This is a 5% increase over MobileNet’s 
recall of 94.10%, 3.50% over MobileNetV2 (95.60%), 
6.65% over AlexNet (92.45%), and 5.25% over VGGNet16 
(93.85%). This higher recall demonstrates that the 
LWDSC-SA model has an improved ability to detect 
diseased plants, minimizing false negatives and ensuring 
that nearly all instances of plant diseases are captured. 
The F1 score, which balances precision and recall, 
further emphasizes the model’s balanced and superior 
performance. The proposed model achieved an F1 
score of 98.70%, which is 5.60% higher than MobileNet 
(93.10%), 4.20% higher than MobileNetV2 (94.50%), 
7.40% higher than AlexNet (91.30%), and 6.10% higher 
than VGGNet16 (92.60%). This significant improvement 
reflects that the LWDSC-SA model effectively recognizes 
plant diseases and maintains a balance between 
sensitivity (recall) and precision.

Specificity is another critical metric for assessing how 
well the model can correctly identify healthy plants. The 
LWDSC-SA model achieved a specificity of 99.96%, the 
highest of all models. In comparison, MobileNet achieved 
95.02%, MobileNetV2 96.10%, AlexNet 93.00%, and 
VGGNet16 94.20%. This results in an improvement of 
4.94%, 3.86%, 6.96%, and 5.76%, respectively. This means 
the LWDSC-SA model is far less likely to incorrectly 
classify healthy plants as diseased. This is particularly 
valuable in practical applications where misclassification 
could lead to unnecessary treatments or interventions.

Lastly, the proposed model demonstrated the 
lowest loss value at 0.013, indicating more efficient 
convergence during training. Compared to MobileNet 
(0.065), MobileNetV2 (0.058), AlexNet (0.087), and 

Table 7 Performance analysis regarding accuracy, precision, recall, f1 score, specificity, and loss

**Accuracy**: Ratio of correctly classified instances to total instances. **Error**: Ratio of misclassified instances to total instances (1 - Accuracy). **Precision**: 
Proportion of accurate positive predictions out of all optimistic predictions. **Recall**: Proportion of correctly identified positives out of all actual positives. 
**Specificity**: Proportion of correctly identified negatives out of all negatives. **F1-Score**: The harmonic mean of Precision and Recall, balancing false positives and 
false negatives

Model Accuracy Precision Recall F1 score Specificity Loss

MobileNet 93.45 92.80 94.10 93.10 95.02 0.065

MobileNetV2 94.20 93.75 95.60 94.50 96.10 0.058

AlexNet 91.30 90.20 92.45 91.30 93.00 0.087

VGGNet16 92.75 91.60 93.85 92.60 94.20 0.072

Proposed model 98.70 98.30 99.10 98.70 99.96 0.013
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VGGNet16 (0.072), the proposed model reduced the 
loss by 0.052, 0.045, 0.074, and 0.059, respectively. This 
drastic reduction in loss indicates a more stable and 
optimized training process, contributing to the model 
accuracy and generalization of unseen data. LWDSC-SA 
model demonstrates clear improvements across all key 
performance metrics. The enhancements in accuracy, 
precision, recall, F1 score, and specificity indicate that 
this proposed model is a more reliable and efficient tool 
for plant disease classification than traditional models, 
offering both accuracy and robustness for real-world 
agricultural applications.

Furthermore, the bar chart in Fig.  8 presents a 
comparative performance analysis of the proposed model 
against state-of-the-art models, including MobileNet, 
MobileNetV2, AlexNet, and VGGNet16. The proposed 
Lightweight Depthwise Separable Convolution with 
Spatial Attention (LWDSC-SA) model outperforms 
all other models across multiple metrics, including 
accuracy (98.7%), precision (98.3%), recall (99.1%), F1 
score (98.7%), and specificity SpecificityCompared 
to MobileNetV2, the second-best performer, the 
proposed model achieves a higher recall and specificity 
its effectiveness in minimizing false positives and false 
negatives. These results demonstrate that the proposed 
model is more robust and efficient for plant disease 
classification, with improved performance across all key 
evaluation metrics.

Moreover, Fig.  9 illustrates the performance 
comparison of the proposed model against other state-
of-the-art models in terms of loss value. The proposed 
Lightweight Depthwise Separable Convolution with 
Spatial Attention (LWDSC-SA) model achieves the 
lowest loss value of 0.013, significantly outperforming 
MobileNet (0.065), MobileNetV2 (0.058), AlexNet 
(0.087), and VGGNet16 (0.072). A lower loss value 
indicates that the proposed model is more efficient and 
stable during the training process, with a better ability 
to minimize prediction errors and generalize well to 
unseen data, ultimately leading to improved classification 
performance.

Statistical validation of LWDSC‑SA model performance
To rigorously validate the performance improvements of 
the LWDSC-SA model over baseline models (MobileNet, 
MobileNetV2, AlexNet, and VGGNet16), paired 
statistical tests were conducted, as shown in Table  8. 
Mean differences in key performance metrics, including 
accuracy, precision, recall, F1 score, and specificity, 
were computed, revealing consistent improvements 
across all comparisons. For example, the LWDSC-SA 
model outperformed AlexNet by an average of 6.07% 
and MobileNet by 4.37% in these metrics. A paired t-test 
confirmed the statistical significance of these differences, 
with all p-values below 0.05 (e.g., for MobileNet). 
Additionally, 95% confidence intervals were calculated 

Fig. 8 Performance analysis of the proposed model with the state‑of‑the‑art models
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to provide robust estimates of the performance gains; 
for instance, the LWDSC-SA model’s improvements over 
MobileNet were estimated within a range of 2.46% to 
6.29%. These results quantitatively affirm the LWDSC-SA 
model’s superior performance, demonstrating its 
robustness and reliability for plant disease classification, 
especially in challenging agricultural scenarios.

Robustness evaluation using K‑fold cross‑validation
To further assess the robustness of the proposed 
LWDSC-SA model, we performed K-fold cross-
validation, a widely accepted method to evaluate model 
performance comprehensively. This approach divides 
the dataset into K=5 equally sized folds, ensuring that 
each image is used for training and validation. The 
model is iteratively trained and validated k times, with 
one fold as the validation set, while the remaining k1 
folds are used for training. This methodology provides a 
more thorough evaluation compared to the traditional 
single training-validation-test split, ensuring that the 
model is tested on all parts of the dataset. Additionally, 
this strategy minimizes the impact of random 
partitioning, leading to a more reliable assessment of 
the model’s capabilities.

The results from the K-fold cross-validation as 
shown in Table 9 demonstrate the high and consistent 

Fig. 9 Performance analysis of the proposed model regarding loss value

Table 8 Statistical validation of LWDSC‑SA model compared to 
baseline models

Model Mean 
difference 
(%)

t-Statistic p-value 95% 
Confidence 
interval (%)

MobileNet 4.37 40.13 2.30× 10−6 [2.46, 6.29]

MobileNetV2 3.43 20.77 3.17× 10−5 [1.90, 4.96]

AlexNet 6.07 29.83 7.52× 10−6 [3.40, 8.75]

VGGNet16 4.95 25.25 1.46× 10−5 [2.76, 7.14]

Table 9 Performance metrics of the LWDSC‑SA model using K‑fold cross‑validation

Fold Accuracy (%) Pre- (%) Recall (%) F1 Score (%) Spec-(%) Loss

Fold 1 98.5 98.1 98.9 98.5 99.2 0.014

Fold 2 98.7 98.4 99.0 98.7 99.4 0.013

Fold 3 98.6 98.3 98.8 98.5 99.3 0.015

Fold 4 98.4 98.2 98.7 98.4 99.1 0.016

Fold 5 98.7 98.5 99.1 98.8 99.4 0.013

Average 98.58 98.30 98.90 98.58 99.28 0.0142
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performance of the LWDSC-SA model across all 
metrics. The accuracy values for all folds remain 
tightly clustered around 98.5% to 98.7%, with an 
average of 98.58%. This indicates that the model can 
effectively classify plant diseases regardless of the data 
partitioning. Similarly, precision, recall, and F1 scores 
are consistently high, averaging 98.30%, 98.90%, and 
98.58%, respectively. These metrics demonstrate the 
model’s performance in identifying true positives and 
avoiding false positives. The specificity value, averaging 
99.28%, further supports correctly identifying negative 
cases, reducing the likelihood of misclassification. 
The loss values for each fold remain very low, ranging 
from 0.013 to 0.016, with an average loss of 0.0142. 
This indicates the model and minimal overfitting 
during training. Collectively, these results validate 
the robustness and generalization capabilities of the 
LWDSC-SA model, making it suitable for real-world 
agricultural applications.

Discussion
The accurate and efficient classification of plant 
leaf diseases is essential for improving leaf disease 
and, minimizing the loss in agricultural production. 
Conventional models such as MobileNet, MobileNetV2, 
AlexNet, and VGGNet16 have shown varying levels 
of success in performing this task. Still, the increasing 
demand for higher precision, recall, and overall model 
accuracy requires more advanced approaches. The results 
from the graph above highlight the limitations of these 
models in terms of overall performance, demonstrating 
the necessity for a more efficient model that can deliver 
higher classification accuracy, particularly for real-time 
applications where robustness is key. The proposed 
Lightweight Depthwise Separable Convolution with 
Spatial Attention (LWDSC-SA) model addresses this 
challenge by introducing depthwise convolutions coupled 
with spatial attention mechanisms, optimizing feature 
extraction and model efficiency.

Fig. 10 Performance analysis of the proposed model regarding Loss value
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As shown in Fig. 10, the proposed model demonstrates 
substantial improvements over existing state-of-the-art 
models across multiple key performance metrics. For 
instance, compared to AlexNet, the proposed model 
improves accuracy by 7.4%, precision by 8.1%, recall 
by 6.65%, and F1 score by 7.4%, clearly showcasing its 
ability to outperform legacy architectures significantly. 
These improvements are particularly critical for models 
that accurately identify diseased leaves and minimize 
false positives. The specificity improvement is also 
noteworthy, where the proposed model outperforms 
MobileNet by 4.94% and AlexNet by 6.96%. Although 
the LWDSC-SA model performs exceptionally well in 
most classes, a few misclassifications were observed, 
especially among visually similar diseases such as Tomato 
Late blight, Tomato Early blight, and Tomato Leaf spot. 
These misclassifications highlight a limitation in the 
model’s ability to distinguish subtle visual differences in 
these specific categories. To address this, future work 
could refine the spatial attention mechanism to focus on 
disease-specific features. Additionally, including more 
diverse and class-specific data for these diseases could 
enhance the model’s ability to differentiate between 
them. Attention map visualization or feature attribution 
methods could also be employed to better understand 
the areas where the model struggles, leading to targeted 
improvements in its architecture.

Furthermore, the loss value improvements across all 
models underscore the efficiency and stability of the 
LWDSC-SA model during training. The proposed model 
achieves a drastically reduced loss of 0.013, compared to 
0.074 for AlexNet and 0.065 for MobileNet, highlighting 
its ability to converge more effectively. This reduced loss 
results in more accurate predictions and suggests that 
the model generalizes well across different datasets and 
is less likely to overfit. Overall, the results affirm the 
significance of the LWDSC-SA model as a powerful tool 
for plant leaf disease classification, providing superior 
performance across a range of crucial metrics while 
maintaining computational efficiency.

A key strength of the proposed model lies in its 
lightweight design. With only 2.4 million parameters, 
the LWDSC-SA model significantly reduces the 
computational burden compared to VGG16 (138 million) 
and ResNet50 (25 million). This efficiency makes the 
LWDSC-SA model ideal for deployment on low-power 
devices such as mobile phones, edge devices, and drones. 
In real-world agricultural settings, where access to high-
performance hardware is often limited, this lightweight 
architecture enables real-time disease detection, 

empowering small-scale farmers to take timely action 
and minimize crop losses.

The LWDSC-SA is attributed to its thoughtful 
combination of DWSC and SAM, optimizing feature 
extraction and computational performance. Its ability to 
focus on critical regions in plant images while reducing 
redundant computations sets it apart from existing 
models. The LWDSC-SA significantly improves accuracy, 
precision, and recall, while its lightweight design ensures 
practical applicability in real-world scenarios.

The bar graph in Fig.  11 visualizes the performance 
metrics of the LWDSC-SA model across the five folds 
and their average, showcasing high and consistent 
performance across all metrics. Accuracy, precision, 
recall, F1 score, and specificity grouped, exceeding 98% in 
all folds, with minor fluctuations between them, further 
emphasizing the model. Notably, specificity achieves 
the highest values across the folds, reaching an average 
of 99.28%, reflecting the model correctly identifying 
negative cases. The minimal variance observed in the 
metrics across folds highlights the robustness and 
generalization capabilities of the LWDSC-SA model, 
confirming its effectiveness in handling different subsets 
of data and reinforcing its potential for real-world 
applications.

Conclusion
In conclusion, accurately detecting plant leaf diseases 
is critical for enhancing agricultural productivity and 
mitigating crop losses. While effective, traditional 
deep learning models like MobileNet, MobileNetV2, 
AlexNet, and VGGNet16 face challenges extracting 
intricate features from plant images and often lack 
the computational efficiency required for real-world 
applications. To address these limitations, we proposed 
the Lightweight Depthwise Separable Convolution with 
Spatial Attention (LWDSC-SA) model, which integrates 
depthwise separable convolutional layers and spatial 
attention mechanisms to capture fine-grained features 
such as texture, shape, and color while maintaining a 
lightweight design. The LWDSC-SA achieved significant 
improvements over state-of-the-art models, with an 
accuracy of 98.7%, precision of 98.3%, recall of 99.1%, 
F1 score of 98.7%, and specificity while demonstrating 
a reduced loss of 0.013. These results highlight the 
model’s robustness, efficiency, and suitability for 
deployment in resource-constrained environments, 
making it ideal for real-world agricultural applications. 
Despite its promising performance, the proposed 
work has certain limitations. First, the dataset used 
in this study, while extensive, may not fully represent 
real-world variations such as complex backgrounds, 
varying lighting conditions, and leaf occlusions. 
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Addressing these factors would enhance the diverse 
agricultural environments. Future research can focus 
on expanding the dataset to include more plant species 
and environmental conditions and exploring various 
geographical regions and crop types, further enhancing 
its potential as a versatile tool for precision agriculture. 
The LWDSC-SA model presents a promising solution 
for improving early and accurate plant disease 
detection, ultimately contributing to global food 
security and agricultural sustainability.
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