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Abstract
Background Digital color indices provide a reliable means for assessing plant status by enabling real-time estimation 
of chlorophyll (Chl) content, and are thus adopted widely for crop monitoring. However, as all prevalent leaf color 
indices used for this purpose have been developed using green-leaved plants, they do not perform reliably for 
anthocyanin (Anth)-rich red-leaved varieties. Hence, the present study investigates digital color indices for six types 
of leafy vegetables with different levels of Anth to identify congruent trends that could be implemented universally 
for non-invasive crop monitoring irrespective of species and leaf Anth content. For this, datasets from three digital 
color spaces, viz., RGB (Red, Green, Blue), HSV (Hue, Saturation, Value), and L*a*b* (Lightness, Redness-greenness, 
Yellowness-blueness), as well as various derived plant color indices were compared with Anth/Chl ratio and SPAD Chl 
meter readings of n = 320 leaf samples.

Results Logarithmic decline of G/R, G-minus-R, and Augmented Green-Red Index (AGRI) with increasing Anth/Chl 
ratio (R2 > 0.8) revealed that relative Anth content affected digital color profile markedly by shifting the greenness-
redness balance until the Anth/Chl ratio reached a certain threshold. Further, while most digital color features and 
indices presented abrupt shifts between Anth-rich and green-leaved samples, the proposed color index Two-fold 
Red Excess (TREx) did not exhibit any deviation due to leaf Anth content and showed better correlation with SPAD 
readings (R2 = 0.855) than all other color features and vegetation indices.

Conclusion The present study provides the first in-depth assessment of variations in RGB-based digital color indices 
due to high leaf Anth contents, and uses the data for Anth-rich as well as green-leaved crops belonging to different 
species to formulate a universal digital color index TREx that can be used as a reliable alternative to handheld Chl 
meters for rapid high-throughput monitoring of green-leaved as well as red-leaved crops.
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Background
Transition of emphasis from “food quantity” to “food 
quality” has led to a noticeable surge in interest towards 
expanding and improving the production of leafy vegeta-
bles in the past decade [1]. Growing focus on the nutri-
tive value of foodstuffs has highlighted the importance 
of anthocyanins (Anth) as key nutritional compounds 
owing to their high antioxidant activity and numerous 
potential health benefits [2]. Consequently, there have 
been concerted efforts to promote large-scale produc-
tion of various Anth-rich leafy vegetables belonging to 
diverse plant families [3]. This rising interest in cultiva-
tion of Anth-rich “red-leaved” vegetables has brought to 
light a new challenge for growers: monitoring the health 
and physiological status of such crops efficiently.

Leaf chlorophyll (Chl) content has been widely used an 
indicator of plant health and physiological status since 
decades as it is connected strongly with plant nitrogen 
content and directly affects photosynthesis [4–6]. Hence, 
non-invasive monitoring of crops via hand-held Chl 
meters has become very common in the past decades 
[7–10]. However, such devices require manual mea-
surements from each leaf, making the process slow and 
labor-intensive. Further, inferences from point measure-
ments are subjective considering localized variations in 
pigmentation within the leaf. As an alternative, various 
machine vision technologies have emerged as reliable 
means of high-throughput real-time monitoring of plants 
[11, 12]. Amongst those, RGB (Red, Green, Blue) cam-
eras have been adopted most widely for crop monitoring 
considering the synergistic relation between plant health, 
Chl content, and leaf color [9, 13–15]. Steady improve-
ments in RGB sensors have resulted in better resolution, 
reduced size, easy availability, and hassle-free applica-
tion of RGB cameras, making it highly feasible for crop 
monitoring at a commercial scale [16–18]. Hence, RGB 
imaging has been especially well explored for develop-
ing digital color indices for tracking the variations in leaf 
color which “reflect” the physiological status of plants 
[19].

However, because green-leaved plants dominate con-
ventional commercial cultivation, the existing digital 
color indices for crop monitoring have been developed 
primarily for plants with low Anth levels. Consequently, 
such indices focus on the total and relative abundance 
of Chl and carotenoids (Car) as the key indicators of 
the physiological status [9, 13–15, 20–23]. Conversely, 
digital image analysis for red-leaved (Anth-rich) plants 
has primarily focused on estimating leaf Anth content 
[24–26]. A few studies have demonstrated the feasibility 
of predicting Chl content in sweet potato [27] and vari-
ous Anth-rich tree leaves [28, 29] using reflectance spec-
trophotometry. However, implementation of RGB-based 

color indices for monitoring green-leaved as well as 
Anth-rich plants in tandem remains largely unexplored.

Therefore, the current study aims to develop a universal 
method for monitoring both green-leaved and Anth-rich 
plants using RGB imaging. For this, we analyzed images 
from six different leafy vegetables with varying levels of 
Chl and Anth to visualize the impact of high Anth con-
tent on digital color features as well as established color 
indices. We explored the influence of changing Anth/
Chl ratio on digital color parameters, to gain insights into 
how different pigment blends influence leaf color pro-
files. Subsequently, digital color attributes that remained 
consistent despite variations in Anth content were iden-
tified, and the information was utilized to formulate a 
color index that could be implemented for non-invasive 
real-time crop monitoring across different species and 
leaf Anth levels.

Materials and methods
Plant material
Six leafy vegetables with different levels of Anth content 
were selected for the present study (Fig. 1), and were clas-
sified into three groups based on leaf pigment status as 
follows: (1) high Anth (HA)– Purple basil (Ocimum basi-
licum L. var. purpurascens; PB) and Red pak choi (Bras-
sica rapa L. ssp. chinensis cv. ‘Rubi F1’; RPC); (2) medium 
Anth (MA)– Scarlet kale (Brassica oleracea L. var. aceph-
ala ‘Scarlet’; SK); and (3) low Anth (LA)– Green pak choi 
(Brassica rapa L. ssp. chinensis; GPC), arugula (Eruca 
vesicaria ssp. sativa Mill. cv. ‘Wasabi Rocket’; WR), and 
Greek basil (Ocimum basilicum L. var. minimum; GB). 
Leaf color ranged between dark purple and reddish-
green for HA samples, green lamina with reddish-tinge 
and red midrib for MA samples, and different yellow-
green shades with no hint of red for LA samples (Fig. 1).

Seedlings of all plants were grown in coco-peat plugs 
(Van der Knapp, The Netherlands) in a nursery (Aralab-
InFarm UK Ltd., London, UK), with each plug holding 
5–10 seedlings. When the seedlings reached a height 
of ca. 5  cm, the seedling plugs were transferred to an 
experimental hydroponic vertical farm (InStore Farm V2, 
InFarm UK Ltd.) stationed at the Agriculture Building, 
Newcastle University, UK. Seedling plugs for each type of 
plant were placed in two hydroponic trays (30 × 40 cm2) 
having a 3 × 4 array of equally-spaced empty slots for 
seedling plugs, totaling 24 seedling plugs for each plant 
type. A commercial hydroponics fertilizer mix was used 
as the nutrient source, and irrigation was performed fol-
lowing the ebb-and-flow system wherein the nutrient 
solution was flooded into the hydroponic chamber inter-
mittently (10 min/h) to soak the roots. A white LED array 
having an approximate red (400–499  nm): green (500–
599 nm): blue (600–699 nm) distribution of 40:20:40 was 
used to provide a PPFD of 280 µmol/m2sec following a 
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16/8 h day-night cycle. Temperature and relative humid-
ity were maintained at 25 ± 1 °C and 65 ± 5%, respectively. 
Sensors for temperature, humidity, flow rate, electrical 
conductivity, and pH within the vertical farming system 
were connected to a Farmboard (InFarm UK Ltd.) for 
real-time monitoring of the plant growth environment.

Leaf sampling and SPAD measurement
A total of n = 320 leaf samples were collected from the 
six types of plants (PB, n = 60; RPC, n = 40; SK, n = 100; 
GPC, n = 40; WR, n = 40; GB, n = 40) between 15 and 20 
days of growth within the experimental setup. Samples 
with variations in pigmentation due to inherent physi-
ological changes were selected to get a wide range of leaf 
color profiles, whereas very young (< 10 days old) as well 
as fully-senesced leaves were specifically avoided. Leaves 
were labeled prior to excision, and Chl content was mea-
sured non-invasively by taking three readings from each 
leaf via a SPAD-502 Plus meter (Konica-Minolta, Inc., 
Tokyo, Japan) avoiding the midrib and prominent veins 
[30]. Notably, SPAD measurements have been considered 
the “gold standard” for non-invasive assessment of plant 
physiological status and estimation of leaf Chl content 
following numerous reports over more than two decades 
[10], and hence, have been used likewise in the present 
study. Subsequently, leaves were excised at the base for 

image acquisition (described in the next section), fol-
lowed by destructive measurement of pigment contents 
(described later).

Image acquisition
Leaf samples were transferred to a customized imaging 
setup for digital image acquisition (Fig.  2) immediately 
following excision. The setup comprised of a metal frame 
for mounting a smartphone camera and LED-luminaires 
for lighting, along with a horizontal platform (stage) with 
a matte white surface for placing the leaf samples. Images 
were acquired using a Redmi Note 7 Pro smartphone 
(Xiaomi Corp., Beijing, China) equipped with a Sony 
IMX 586 RGB sensor (size 1/2.0”, Quad-Bayer array) 
within a dual rear-camera system (primary lens: resolu-
tion 48 megapixels, aperture f/1.8, wide angle, pixel size 
1.6 µm, phase detection autofocus; secondary lens: reso-
lution 5 megapixels, aperture f/2.4, depth perception). 
The Open Camera android application (ver. 1.52, devel-
oper: Mark Harman, source: Google Play Store) was used 
for capturing images (8000 × 6000 pixels, sRGB color 
space, JPEG format). The smartphone was placed within 
a compact cradle suspended from the metal frame to pre-
vent camera movement or change in camera angle. Cam-
era-to-stage distance of 50 cm was maintained along with 
constant imaging parameters (exposure time 1/100 sec, 

Fig. 1 Representative leaf samples with varying levels of pigmentation from the six types of leafy vegetables selected for the present study. Purple basil 
and Red pak choi were grouped as high anthocyanin (HA) samples, and Scarlet kale was considered as the only member of the medium anthocyanin 
(MA) group. Greek basil, Green pak choi, and Arugula (cv. ‘Wasabi rocket’) were categorized as low anthocyanin (LA)
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ISO-200). Camera focus was fixed on the stage before 
placing the leaf samples, and automatic adjustments 
(autofocus and exposure compensation) were disabled to 
ensure uniformity across images. Camera flash was dis-
abled during the process to avoid glares. Instead, lighting 
was provided by four neutral-white (4000 K) LED tube-
lights (Model No. 0051048, Feilo Sylvania International 
Group Kft., Budapest, Hungary; www.sylvania-lighting.
com). Fixed lighting prevented undesirable fluctuations 
in brightness and color temperature between images, and 
nullified image pre-processing requirements. As enough 
lighting was provided, a relatively low ISO was adequate 
for ensuring sharp images while minimizing noise. 
Images were captured remotely using the voice-activated 
mode within the smartphone application to avoid shad-
ows, delays, or any disturbances that could be caused by 
manual handling.

Spectrophotometric estimation of pigment contents
Leaf sections were collected for spectrophotometric 
estimation of total Chl, Car, and Anth contents imme-
diately following image acquisition. Briefly, two 2 cm2 
sections were excised from each leaf, weighed individu-
ally, sealed into separate 1.5  ml centrifuge tubes, and 
transferred to -20 °C for storage. Vials of all the samples 

were subsequently put in a liquid nitrogen bath, fol-
lowed by tissue pulverization using stainless-steel beads 
within a tissue homogenizer (Geno/Grinder 2010, SPEX 
SamplePrep, Cole-Parmer, Illinois, USA). One batch of 
samples (n = 320) was used for estimating Chl and Car 
contents, whereas the other batch (n = 320) was used for 
estimating Anth content.

Chl and Car contents were estimated following acetone 
extraction as described by Lichtenthaler [31]. Briefly, 
1 ml of ice-cold 80% (v/v) acetone was added to each vial, 
followed by centrifugation at 10,000 g at 4 °C for 15 min. 
The supernatant was collected, and the pellet was re-
extracted using 1  ml of the solvent. Both supernatants 
were pooled, and absorbance was recorded spectropho-
tometrically at 470 nm (A470), 647 nm (A647), and 663 nm 
(A663) for calculating the total Chl and Car contents per 
unit leaf fresh weight (FW) for 2  ml (Vol) of extract as 
follows:

 
Chl (mg/gFW ) = (18.71A647 + 7.15A663) × V ol

1000 × FW
 (1)

 Car (mg/gFW ) = (1000A470 − 1822.85A647 + 411.31A663) × V ol

198 × 1000 × FW
 (2)

Fig. 2 Schematic representation of the customized setup for leaf image acquisition. A metal frame was used for mounting a smartphone camera and 
LED lights. A matte white board was used as the background for leaf imaging while maintaining a fixed distance of 50 cm from the camera. Camera pa-
rameters (focus, exposure, and ISO) were set by focusing on the empty stage to maintain uniformity of color tone across images. Images were captured 
using the voice-activated mode to operate the camera remotely, avoiding camera movement and shadows
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Anth content was estimated following the method of 
Mancinelli et al. [32]. A similar extraction procedure as 
above was followed using chilled acidified (1% w/v HCl) 
methanol as the solvent. Absorbance was recorded at 
530 nm (A530) and 657 nm (A657) for calculating the total 
Anth content using the expression A530– (0.25×A657). 
Here A530 corresponds to the peak absorbance of Anth, 
and A657 was used for pheophytin correction. A stan-
dard curve was prepared using cyanidin-3-O-glucoside 
(Merck KGaA, Darmstadt, Germany) for calculating rela-
tive Anth content per unit leaf biomass (mg/g FW).

Color feature extraction
A customized image processing pipeline was designed 
to extract the color feature values of whole leaves using 
the numpy and cv2 libraries in Python program (www.
python.org). Within the pipeline, each RGB image was 
used to directly extract the R, G, B features using cv2 
library commands. Additionally, Hue, Saturation, and 
Value (HSV) as well as Lightness, Redness-greenness, 
and Yellowness-blueness (L*a*b*) color features were also 
extracted from the image. For each color feature channel, 
values for all pixels within the leaf boundary (minimum 
5000 pixels) were averaged to obtain the mean color fea-
ture value for the entire leaf. Normalized RGB features 
and various previously-reported digital color indices 

(Table  1) were calculated using these color feature val-
ues. In addition, two new redness-based color contrast 
indices, viz., Simple Red Excess (SREx) and Two-fold Red 
Excess (TREx) were also tested (Table 1).

Data visualization and comparison
Averaged SPAD values (n = 3 per leaf ) were plotted 
against the spectrophotometrically evaluated Chl con-
tent by collating the data for HA, MA, and LA samples to 
visualize relative trends. Similarly, Car and Anth contents 
were also plotted against Chl content to compare relative 
trends across the different sample categories. Anth/Chl 
ratio was compared with individual color features as well 
as with G/R, GMR, and AGRI to understand the impact 
of different pigment blends on individual color fea-
tures and the greenness-redness balance. Subsequently, 
all remaining vegetation indices as well as RGB, HSV, 
L*a*b*, and rgb values were individually plotted against 
SPAD values to visualize the trends for HA, MA, and LA 
samples.

Statistical analysis
Homogeneity of variance for Chl, Anth, and Car con-
tents across the different plant species and varieties was 
assessed using the Bartlett test. Subsequently, Kruskal-
Wallis non-parametric test and Dunn’s post hoc test 

Table 1 Vegetation indices and normalized RGB features derived from digital images
Color features and indices Equation Reference
Normalized Red r = R/(R + G + B)  [13]
Normalized Green g = G/(R + G + B)
Normalized Blue b = B/(R + G + B)
Normalized Green-Blue Difference Index NGBDI = (G– B)/(G + B)
Woebbecke’s Index WI = (g– b)/(|r– g|)  [33]
Normalized Difference Pigment Index NDPI = (R– B)/(R + B)  [34]
Normalized Difference Index NDI = (r– g)/(r + g + 0.01)  [35]
Green-Red ratio G/R  [36]
Green-Blue ratio G/B  [15]
Intensity (R + G + B)/3
Red-Blue ratio R/B  [37]
Green Leaf Index GLI = (2*G– R– B)/(2*G + R + B)  [38]
Visible Atmospherically Resistance Index VARI = (G– R)/(G + R– B)  [39]
Normalized Green-Red Difference Index NGRDI = (G– R)/(G + R)
Dark Green Color Index DGCI = [1 + (H/60)– S– V]/3  [40]
Green-minus-Red GMR = G– R  [41]
Red-plus-Green-minus-Blue R + G– B  [15]
Excess Green ExG = 2*G– R– B  [42]
Excess Blue ExR = 1.4*b– g  [43]
Excess Red ExB = 1.4*r– g
Augmented Green-Red Index AGRI = GMR × G/R  [44]
Red-Green difference R– G  [45]
Red-Blue difference R– B
Simple Red Excess SREx = R– G– B -
Two-fold Red Excess TREx = 2*R– G– B -
B, Blue; G, Green; H, Hue; R, Red; S, Saturation; V, Value

http://www.python.org
http://www.python.org
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were performed to assess the significance of difference 
amongst the different leafy vegetables for the content 
of each type of pigment. Curve-fitting via linear, qua-
dratic, exponential, logarithmic, and power functions 
was performed in Microsoft Excel 365 (Microsoft Corp., 
USA) for obtaining regression trends for all scatter plots 
(n = 320). Equations along with the respective coefficient 
of determination (R2) for best-fit trendlines were selected 
to represent the relation mathematically. Point of inflec-
tion (elbow) for the best-fit curve of color indices in rela-
tion to Anth/Chl ratio was detected in R-software (ver. 
4.0.3; www.rproject.org) within the R-Studio environ-
ment (ver. 1.3.1093; www.rstudio.com) using the inflec-
tion package following the Extremum Distance Estimator 
method.

Results
Pigment contents and SPAD readings
Chl as well as Car contents were comparable for all 
types of leafy vegetables, whereas Anth content var-
ied significantly as expected (Fig.  3a). Specifically, Chl 

content ranged between 0.47 and 2.1  mg/g FW for the 
HA samples, 0.1–2.1 mg/g FW for the MA samples, and 
0.06–2.3  mg/g FW for the LA samples. Similarly, Car 
content ranged between 0.09 and 0.36 mg/g FW for the 
HA samples, 0.09–0.38  mg/g FW for the MA samples, 
and 0.03–0.35 mg/g FW for the LA samples. In contrast, 
Anth content was highest in the HA plants (p < 0.05), 
with values ranging between 0.43 and 3.42 mg/g FW for 
PB, followed by 0.07–1.02  mg/g FW for RPC. Further, 
while mean Anth content for the MA group, i.e., the SK 
samples, was relatively closer to the lower range between 
0.001 and 0.33  mg/g FW, it was lower still in the three 
LA plants, i.e., GB, WR, and GPC, ranging between 0.001 
and 0.07  mg/g FW. SPAD values for the HA samples 
ranged between 22 and 59, whereas the range was 8–56 
for MA samples, and 6–62 for the LA samples (Fig. 3b). 
A strong non-linear correlation was observed between 
Chl content and SPAD readings (R2 = 0.791; n = 320) upon 
combining the data for all samples (Fig.  3b). Similarly, 
the comparison between Chl and Car contents revealed 
a strong linear relation (R2 = 0.705; n = 320; Fig.  3c). 

Fig. 3 Chlorophyll (Chl), anthocyanin (Anth), and carotenoid (Car) contents of Purple basil (PB; n = 60), Red pak choi (RPC; n = 40), Scarlet kale (SK; n = 100), 
Arugula cv. ‘Wasabi rocket’ (WR; n = 40), Greek basil (GB; n = 40), and Green pak choi (GPC; n = 40) (a), as well as the relation of Chl content with SPAD values 
(b), Car content (c), and Anth content (d) for plants with high (HA), medium (MA), and low (LA) levels of Anth. Box-and-Whisker plots show the mean (×), 
median (horizontal line), interquartile range (box), and whiskers representing 5 and 95% percentiles (a). Significant differences in mean values for each 
type of pigment (a) are indicated by different alphabets as per Dunn’s post hoc test (p < 0.05). Equations (b, c) describing the best fit curves for all data 
combined (n = 320) have been presented along with the coefficients of determination (R2). *Fitted curve for Chl vs. Anth (d) has not been presented 
owing to very poor correlation (R2 < 0.1; n = 320). FW, fresh weight

 

http://www.rproject.org
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However, no clear trend was evident between Anth and 
Chl contents (R2 < 0.1; n = 320), indicating a lack of cor-
relation between the contents of these two pigments 
(Fig. 3d).

Impact of Anth/Chl ratio on leaf color profile
Anth/Chl ratio ranged between 0.05 and 2.5 for the HA 
category, whereas it was generally less than 1.5 for the 
MA group and below 0.05 for the LA samples, with a few 
exceptions due to extremely low Chl in some LA leaves 
(Fig. 4). All three indices representing greenness-redness 
balance, viz., G/R, GMR, and AGRI, showed strong cor-
relation with Anth/Chl ratio (R2 > 0.8; n = 320), wherein 
samples from all three groups were clustered homog-
enously, irrespective of leaf Anth status. Point of inflec-
tion (elbow) in the logarithmic curves was found to be at 
Anth/Chl ≈ 0.2 for all three indices (Fig. 4). Amongst indi-
vidual color features (Supplementary Fig. S1), H showed 
strong correlation with Anth/Chl values (R2 = 0.816; 
n = 320), followed by a* (R2 = 0.746; n = 320), whereas R 
was affected the least by the variations in Anth/Chl ratio 
(R2 = 0.017; n = 320).

Correlation of SPAD readings with color features and 
indices
All color indices and features revealed characteristic 
trends upon plotting with SPAD values (Fig.  5, Supple-
mentary Figs. S2, S3). In general, HA samples clustered 
distinctly from the MA and LA samples for most of the 
indices as well as color features. Amongst all previously 
reported indices, only DGCI and Intensity exhibited good 
correlation with SPAD (0.68 < R2 < 0.72; n = 320) along 
with homogenous data distributions for the three sample 
categories (Fig. 5e, g). In contrast, the R-B index yielded a 
slightly better correlation with SPAD (R2 = 0.763; n = 320), 
although with minimal overlap between HA and the 
other two groups (Supplementary Fig. S3h). Nonethe-
less, correlation for all three indices was relatively weaker 
compared to R (R2 = 0.847; n = 320; Supplementary 

Fig. S2a). As an exception, only the TREx color index 
(R2 = 0.855; n = 320; Fig. 5i) outperformed R during SPAD 
correlation. Moreover, it did not show any deviation due 
to the presence of Anth, and a homogenous distribution 
of data points was observed upon collating the informa-
tion for HA, MA, and LA samples.

Discussion
Trends in digital color profiles for varying pigment blends
In nature, leaves with adequate Chl content appear green 
when the concentration of green-light-absorbing pigment 
such as Anth is relatively low. Similarly, an Anth-rich leaf 
appears red only when the pigment primarily responsible 
for the absorption of red light, i.e., Chl, is present at low 
concentrations [46–48]. Accordingly, leaves with very 
high contents of both Chl and Anth appear dark-purplish 
due to strong absorption of photons across the entire vis-
ible spectrum [49, 50], as also seen in this study for the 
HA samples (Fig.  1). Conversely, a leaf with very low 
concentrations of both Chl and Anth appears “yellowish” 
because of high reflectance in both red and green wave-
bands, which indicates unmasking of Car [51]. While 
such variations in pigment blends impart unique colors 
to leaves, disentangling that information to assess the 
abundance of Chl remains at the focal point for all image 
analyses aiming at monitoring of crop health and physi-
ological status.

Similar to previous reports on non-invasive assessment 
of plant physiological status [34, 51–53], the positive lin-
ear correlation between Chl and Car contents across all 
six types of leafy vegetables (R2 = 0.705; n = 320; Fig.  3c) 
indicated the strong synergy between the contents of 
both these pigments. Notably, such a relation also implies 
an increase in Car/Chl ratio with decreasing Chl con-
tent [51], which leads to leaf yellowing due to unmask-
ing of Car pigments during leaf senescence or declining 
plant health [52, 54, 55]. This phenomenon alters the 
greenness-redness balance within the leaf color profile, 
and forms the basis of crop monitoring using vegetation 

Fig. 4 Plots for anthocyanin/chlorophyll ratio (Anth/Chl) versus Green/Red ratio (G/R; a), Green-minus-Red index (GMR; b), and Augmented Green-Red 
Index (AGRI; c) for leafy vegetables with different levels of anthocyanin (indicated with different symbols). Coefficients of determination (R2) and equations 
have been presented for the best-fit curve of the combined dataset (n = 320). Dotted rectangles indicate the point of inflection (elbow) in the fitted curves
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indices typically developed using green-leaved species. 
However, in the present study, this trend was not percep-
tible due to the influence of high Anth contents (Fig. 3a), 
which caused a distinct shift in G values (Supplemen-
tary Fig. S2b). Hence, we focused on the Anth/Chl ratio 
to better understand the changes in leaf color profile in 
response to variations in Anth content.

In this context, selection of leaf samples from six dif-
ferent plant species and varieties displaying a wide 
range of visual color profiles (Fig. 1) enabled a compre-
hensive investigation of diverse combinations in digital 
color attributes due to variations in leaf pigment blends 
(Fig.  3a, c, d). Herein, the strong correlation of SPAD 
measurements with spectrophotometrically measured 
Chl contents (R2 = 0.791; n = 320; Fig.  3b) reiterated the 
versatility of the SPAD meter as a reliable indicator of leaf 
Chl status and plant health [10, 15, 35, 56], and also high-
lighted its uniformity across multiple plant species [7–9, 
30]. Notably, there was no impact of Anth content on 

SPAD values (Fig. 3b), which is understandable consider-
ing that SPAD meters measure photon transmission only 
at 650 and 940 nm [36], i.e., within the red and infrared 
wavebands wherein Anth pigments are not very active.

While Chl and Anth contents showed a very poor cor-
relation (R2 < 0.1; n = 320; Fig.  3d), comparing Anth/Chl 
ratio with different color features (Supplementary Fig. S1) 
revealed that features such as H and a*, which can indi-
cate the balance between redness and greenness, were 
most strongly affected by the relative abundance of Anth 
and Chl (Supplementary Fig. S1d, h). Further, increasing 
Anth/Chl ratio caused a rapid decline in G/R, GMR, and 
AGRI values till G and R values converged, i.e., G/R = 1 
or GMR = 0 was reached, corresponding closely with 
Anth/Chl = 0.2 (Fig. 4). However, R showed no deviation 
in response to changes in Anth/Chl ratio (Supplemen-
tary Figs. S1a, S2a). These observations indicated that 
although increase in leaf Anth alters the greenness-red-
ness balance and overall leaf color profile, leaf redness 

Fig. 5 Plots for SPAD measurements versus Excess Green index (ExG; a), Excess Blue (ExB; b), Excess Red (ExR; c), Visible Atmospherically Resistance Index 
(VARI; d), Dark Green Color Index (DGCI; e), Green Leaf Index (GLI; f), Intensity (g), Red-plus-Green-minus-Blue index (R + G-B; h), and Two-fold Red Excess 
index (TREx; i) for leafy vegetables with different levels of anthocyanin (indicated with different symbols). Coefficients of determination (R2) and equations 
have been presented for the best-fit curve for the combined dataset (n = 320)

 



Page 9 of 12Agarwal et al. Plant Methods           (2025) 21:24 

remains largely unaffected. This highlights the potential 
of leaf redness for developing universal vegetation indi-
ces that can be implemented for monitoring the health of 
both green-leaved and anthocyanic crops.

Limitations of conventional indices in broad-spectrum 
crop monitoring
As Chl content is a strong indicator of plant health, iden-
tification of digital color indices for crop monitoring has 
always focused on finding correlations with leaf Chl con-
tent estimated via leaf extracts and/or Chl-meter mea-
surements [19, 35, 57, 58]. Indices such as DGCI [15, 22], 
NGRDI, VARI [35], ExG [58], and NDPI [59], as well as 
R and G color features [14, 15, 20, 60] have been shown 
to correlate well with Chl content estimates. Notably, all 
such studies have focused on green-leaved crops, such as 
soybean, potato, spinach, coffee, barley, and wheat, with 
hardly any reports on crops with anthocyanic leaves.

In the present study, comparison of SPAD values with 
these well-established color indices yielded unexpected 
variations in data distribution upon using the informa-
tion for HA, MA, and LA samples concurrently. For 
example, ExG = 50, corresponding to a SPAD value of 
ca. 55 for green-leaved (LA) samples, was found to coin-
cide with SPAD readings of ca. 30 for Anth-rich (HA) 
samples (Fig. 5a). This would imply that ExG of a healthy 
green-leaved plant would be the same as that of a rela-
tively unhealthy Anth-rich plant, signifying the mislead-
ing or “red herring” effect of leaf Anth in RGB analyses. 
Similar trends were observed for indices such as R + G-B, 
NGBDI, and NDPI (Fig. 5h, Supplementary Fig. S3a, b).

Conversely, indices such as VARI, GLI, and NDI 
showed a bifurcation of the dataset, with LA and MA 
samples clustered together, but having negligible overlap 
with HA samples along the scale of the respective index 
despite similar SPAD values (Fig.  4d, f, Supplementary 
Fig. S3d). Another commonly-used index, viz., Woeb-
becke’s Excess Green (2g– r– b) [33], also presented a 
markedly similar trend as GLI with only a slight change 
in scale (data not shown). Such observations clearly indi-
cate that there is a major shift in the RGB color space 
data which limits the scope of implementing existing 
RGB-based indices for monitoring green-leaved and 
Anth-rich crops in tandem, necessitating the develop-
ment of a color index capable of this feat.

Formulating a universal vegetation index: TREx
Since the color “green” is intuitively associated with plant 
health, conventional vegetation indices mostly focus 
on evaluating the “greenness” of leaves [33, 38, 40, 42]. 
Additionally, strong inverse correlation of G values with 
Chl content has been frequently reported as well [9, 14, 
20, 58, 60]. However, in the present investigation, G val-
ues were distinctly lower in the HA (Anth-rich) samples 

compared to the LA and MA groups (Supplementary 
Fig. S2b), likely due to absorbance by Anth in the blue-
green (400–599 nm) region [61]. Hence, the influence of 
Anth on G values makes the implementation of green-
ness-based color indices unreliable while monitoring the 
health of Anth-rich plants.

Interestingly, although leaf “redness” is commonly 
associated with high Anth content, it was observed that 
the R color feature was not affected by or correlated to 
Anth content at all, and displayed very good correlation 
with SPAD values (Supplementary Figs. S1a, S2a). This 
observation can be explained by the dominant absorp-
tive activity of Chl in the red (~ 600–699 nm) waveband, 
where absorbance by Anth is negligible [61]. Various 
studies have reported a similar correlation of R with Chl 
content [9, 15, 20, 45, 51, 58], suggesting that reflectance 
within the red waveband decreases steadily with increas-
ing Chl content. Hence, such findings suggest that assess-
ing leaf redness by machine vision is a reliable method 
for monitoring plant health as compared to assessing leaf 
greenness.

To further explore the potential of redness-based indi-
ces for crop monitoring, three color contrast indices 
utilizing R, viz., R-G, R-B, and SREx (Table 1), were com-
pared with SPAD readings (Supplementary Fig. S3g–i). 
While SREx and R-G presented unclear trends (R2 < 0.15; 
n = 320), R-B presented a data distribution that was more 
homogenous (R2 = 0.763; n = 320) than all other con-
ventionally-used vegetation index in terms of HA, MA, 
and LA samples (Fig.  5a–h, Supplementary Fig. S3a–f). 
Subsequently, to test the performance of the contrast 
indices collectively, we combined R-B and R-G values. 
This fusion of both contrast indices, i.e., [R-G] + [R-B], 
resulted in the formulation of the TREx index, which 
yielded distinctly better correlation with SPAD mea-
surements (R2 = 0.855; n = 320) while maintaining parity 
across all three sample categories (Fig. 5i).

While various other color contrast-based indices such 
as NGBDI, NGRDI, and NDPI have been found to be 
helpful for monitoring green-leaved crops owing to 
their good correlation with Chl content and SPAD mea-
surements [19], they were found to fall short while co-
analyzing green- and red-leaved samples in the present 
study. Moreover, although color contrast indices utiliz-
ing R have also been reported in the past, including ExG, 
VARI, NGRDI, and GLI, our results clearly demonstrate 
that TREx outperforms them all. Further, it improves the 
inference from R by addressing the contrast with G and 
B reflectance in a more balanced manner, which likely 
accounts for deviations in leaf color profile caused by 
overall elevated pigmentation due to high Anth contents 
more precisely. Hence, this new index has the potential 
to provide more accurate indications of plant physiologi-
cal status, and can be utilized for real-time non-invasive 
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high-throughput crop monitoring of green-leaved and 
anthocyanic crops in tandem.

Future perspectives
As this study aimed at exploring the efficacy of vegetation 
indices from a new perspective by taking high Anth con-
tent into account, the experiments were performed under 
controlled conditions using excised leaves to obtain pre-
cise correlations between color features and SPAD mea-
surements. The next step would be to investigate the 
utility of the proposed method with whole plants and in 
situ imaging to assess its practical feasibility for large-
scale implementation. Specifically, exploring different 
lighting environments could enhance our understanding 
of how external light influences color features while using 
this approach. Additionally, while our study effectively 
utilized a limited number of HA samples with very low 
SPAD values, future research could benefit from using a 
larger number of samples from Anth-rich species with 
very low Chl content for a more detailed assessment of 
changes in RGB indices, especially at lower pigment lev-
els. Investigating stressors to further reduce Chl content 
in Anth-rich species could offer valuable insights into this 
aspect as well. Future studies could also explore simulta-
neous assessment of plant health and nutritional qual-
ity via concurrently estimating Chl and Anth contents. 
Enhancing prediction accuracy through more advanced 
data processing and machine learning techniques such as 
deep learning could further expand the application of this 
approach in commercial growing systems.

Conclusion
As the interest in cultivating Anth-rich leafy vegetables 
is growing steadily, improvement and optimization of 
high-throughput technologies for monitoring such plants 
has become imperative. The present study provides the 
first in-depth insight into the feasibility of RGB-based 
crop monitoring for green-leaved and anthocyanic plants 
simultaneously. Our findings indicated that a majority 
of well-established greenness-based color indices were 
strongly affected by high Anth content, and gave highly 
dissimilar outcomes for anthocyanic and green-leaved 
plants. However, unlike most other color features, R 
was not affected by leaf Anth content at all. Hence, the 
redness-based contrast index TREx was formulated, 
which was found to correlate most strongly with Chl 
content measured via SPAD as compared to all other 
color indices. Since consistent results were obtained 
for both green- as well as red-leaved plants belonging 
to four different species, our findings suggest that these 
colorimetric parameters have the potential to be utilized 
universally. Hence, by depicting the efficacy of TREx, a 
simple but previously unexplored digital color index, the 
current study provides novel insights into the utility of 

plant image analysis with focus on redness-based color 
attributes for monitoring green-leaved and Anth-rich 
plants alike. In-depth investigations involving additional 
Anth-rich crop species will further strengthen the knowl-
edge base and broaden the applicability of this approach 
for assessing plant health. Expanding this research along 
with further validation and refinement of the method will 
pave the way for more widespread use in diverse agricul-
tural settings.
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