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Abstract 

Accurate detection of missed tassels is crucial for maintaining the purity of hybrid maize seed production. This 
study introduces the MT-YOLO model, designed to replace or assist manual detection by leveraging deep learning 
and unmanned aerial systems (UASs). A comprehensive dataset was constructed, informed by an analysis of the agro-
nomic characteristics of missed tassels during the detasseling period, including factors such as tassel visibility, plant 
height variability, and tassel development stages. The dataset captures diverse tassel images under varying lighting 
conditions, planting densities, and growth stages, with special attention to early tasseling stages when tassels are 
partially wrapped in leaves—a critical yet underexplored challenge for accurate detasseling. The MT-YOLO model 
demonstrates significant improvements in detection metrics, achieving an average precision (AP) of 93.1%, preci-
sion of 93.3%, recall of 91.6%, and an F1-score of 92.4%, outperforming Faster R-CNN, SSD, and various YOLO models. 
Compared to the baseline YOLO v5s, the MT-YOLO model increased recall by 1.1%, precision by 4.9%, and F1-score 
by 3.0%, while maintaining a detection speed of 124 fps. Field tests further validated its robustness, achieving a mean 
missed rate of 9.1%. These results highlight the potential of MT-YOLO as a reliable and efficient solution for enhancing 
detasseling efficiency in hybrid maize seed production.

Keywords  Agricultural automation, Detasseling process, Hybrid maize seed production, Missed tassel detection, 
MT-YOLO

Introduction
Maize is a crucial staple crop, accounting for approxi-
mately 35.7% of the world’s total grain production [1], 
and serves as a primary resource for animal feed, fuel, 
and industrial raw materials. Hybrid maize, renowned 
for its increased yield and strong adaptability, dominates 
over two-thirds of global maize planting areas [2], with 
95% of maize planting areas in China utilizing hybrid 
maize seeds [3]. To meet China’s annual demand of 1.1 
billion kilograms of hybrid maize seeds, it is essential to 
produce hybrid maize seeds every year, as their hybrid 
advantage diminishes from the second generation [4, 5]. 
Among the critical steps to ensure seed purity, detas-
seling—the removal of tassels from female maize par-
ents—prevents self-pollination and ensures hybridization 
quality [6]. Despite the availability of advanced ground-
detasseling machines, such as the Hagie 204SP from John 
Deere, the BD864 from Bourgoin, and China’s 3CX-8A 
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[7], terrain fluctuations and high planting density often 
result in missed tassels after bulk detasseling. Tradition-
ally, the detection of detasseling quality and the removal 
of missed tassels rely on labor-intensive manual meth-
ods, which are prone to subjectivity and inefficiencies. 
Considering the short 7–10 day window for detasseling 
during maize seed production, there is an urgent need 
for intelligent detection technologies and equipment to 
enhance the efficiency and precision of identifying and 
addressing missed tassels, thereby improving automation 
and reducing reliance on manual labor.

In recent years, UASs have gained prominence in agri-
culture and forestry, particularly for crop remote sensing 
and plant protection, due to their speed, maneuverabil-
ity, terrain adaptability, and minimal soil compaction 
and plant damage [8–13]. In maize seed detasseling, 
Chen et  al. [14] introduced a UAS capable of detect-
ing and removing missed tassels, offering an intelligent, 
unmanned solution. Key technologies in detasseling 
UASs include missed tassel identification and position-
ing, detasseling path planning, control systems, and 
execution components, with the primary challenge being 
accurate missed tassel detection.

The YOLO (You Only Look Once) model, introduced 
by Redmon et  al. [15], revolutionized object detection 
by offering a single-stage framework that combines high 
speed with competitive accuracy. Unlike traditional two-
stage detectors like Faster R-CNN, YOLO processes the 
entire image in a single forward pass, making it ideal for 
real-time applications. Over the years, YOLO has evolved 
through multiple iterations, with each version improv-
ing accuracy, speed, and computational efficiency. The 
latest versions, such as YOLOv7 [16], YOLOv8 [17], 
and the recently released YOLOv11 [18], have set new 
benchmarks in real-time object detection, particularly in 
complex environments. YOLO’s modular design, featur-
ing a backbone for feature extraction, a neck for feature 
aggregation, and a head for detection, allows for easy 
customization, making it a popular choice in agricultural 
applications. Its balance between speed and accuracy 
has been effectively demonstrated in tasks such as crop 
monitoring, pest detection, and yield estimation [19, 20]. 
Furthermore, the integration of attention mechanisms 
[21] and lightweight architectures has enhanced YOLO’s 
capabilities, enabling it to handle challenges such as 
dense foliage and variable lighting conditions.

In maize tassel detection, Liu et  al. [22] optimized 
the Faster R-CNN model for UAV imagery, while Alz-
adjali et al. [23] developed the TD-CNN model, which 
provided faster training and simpler frameworks. One-
stage DL algorithms, such as YOLO and SSD, have 
further enhanced real-time detection capabilities. Liu 
et al. [24] improved YOLO v5 to achieve a mean average 

precision (mAP) of 44.7%, while Song et  al. [25] inte-
grated the SENet attention mechanism into YOLO_X, 
increasing mAP to 95%. Similarly, Liang et al. [26] pro-
posed the SSD_mobileNet model, combining faster 
detection speeds and compact size with high accuracy. 
Pu et  al. [27] introduced Tassel-YOLO, a UAV-based 
model for maize tassel detection and counting, dem-
onstrating the extensive potential of YOLO models in 
agricultural applications.

Despite these advancements in maize tassel detec-
tion, previous studies have predominantly focused on 
tassels in common maize or those that have already 
shed pollen, which are more readily identified due to 
their distinct coloration and open morphology. How-
ever, detecting missed tassels during the critical detas-
seling stage in hybrid maize seed production remains a 
significant challenge. These tassels are often partially or 
entirely enclosed by green leaves, resulting in indistinct 
coloration that blends with the surrounding foliage. 
Moreover, their variable morphology and the dense 
planting configurations frequently lead to occlusion by 
neighboring leaves. Additionally, inconsistent lighting 
conditions and shadowing within the maize canopy fur-
ther complicate detection by obscuring tassels or intro-
ducing visual artifacts.

Given these challenges, ensuring high accuracy in iden-
tifying missed tassels is critical for maintaining the purity 
of hybrid maize seeds. This study addresses these issues 
by integrating drones and artificial intelligence technolo-
gies to develop and optimize detection algorithms. The 
proposed approach aims to enhance detection precision 
across large-scale fields, enabling rapid identification of 
missed tassels to support manual or mechanical detas-
seling operations, ultimately improving the efficiency and 
quality of hybrid seed production. To achieve this, the 
study focuses on the following objectives:

(1)	  Develop an MT-YOLO Model: Design and opti-
mize an MT-YOLO model using UAS and deep 
learning technologies to detect missed tassels dur-
ing the detasseling stage of hybrid maize produc-
tion.

(2)	 Construct a Dataset of Missed Tassels: Develop a 
specialized dataset featuring missed tassels under 
varied lighting conditions, planting densities, and 
tasseling stages to ensure robust model training and 
evaluation.

(3)	  Enhance Detection Accuracy and Speed: Improve 
the YOLOv5 model for higher precision and speed 
in detecting missed tassels in complex field envi-
ronments, addressing challenges such as occlusion, 
morphological variability, and environmental inter-
ference.
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(4)	 Validate Model Performance: Conduct large-scale 
field tests to assess the accuracy, efficiency, and 
adaptability of the MT-YOLO model in real-world 
detasseling scenarios.

Materials and methods
Overview and workflow of the UAS‑based missed tassel 
detection system
In hybrid maize seed production, detasseling is essen-
tial for maintaining seed purity. However, mechani-
cal detasseling systems often leave behind missed 
tassels, requiring additional inspection and removal. 
Traditionally, this process has relied on manual labor, 
which is both time-consuming and labor-intensive. 
To address these limitations, this study introduces an 
efficient solution by integrating UASs with deep learn-
ing technology for the automated detection of missed 
tassels. As illustrated in the workflow diagram (Fig. 1), 
after mechanical detasseling, UASs equipped with 
advanced computer vision systems survey the fields to 
detect missed tassels. The MT-YOLO model processes 
the captured images in real-time, accurately identify-
ing missed tassels and providing georeferenced loca-
tion data to guide subsequent manual or drone-based 
detasseling operations. This system demonstrates sig-
nificant potential to enhance operational efficiency 
and detection accuracy while reducing reliance on 
labor-intensive methods.

Image acquisition and dataset construction
The maize tassel images used in this study were cap-
tured in July 2023 at the National Precision Agriculture 
Research and Demonstration Base in Changping Dis-
trict, Beijing, China (116°26′ 18.84″ E, 40°10′ 55.17″ 
N) (Fig.  2). Photography sessions were conducted twice 
daily: in the morning (09:00–11:00) and in the after-
noon (15:00–18:00) to ensure a variety of lighting con-
ditions, such as brighter illumination in the morning 
and softer lighting in the afternoon. A DJI Phantom 4 
RTK unmanned aerial vehicle was used, equipped with 
a gimbal camera positioned vertically to the ground. 
Flights were conducted at altitudes of 3 m, 5 m, and 7 m 
to capture maize tassel images at different heights above 
the canopy. A total of 9000 tassel images were collected, 
and after manual screening for quality and relevance, 
886 high-resolution (5,472 × 3,648 pixels) visible-light 
images were retained for further analysis. This combi-
nation of varying lighting conditions and multiple alti-
tudes enhanced the dataset’s utility for training models 
designed to detect missed tassels effectively.

To enhance model training efficiency and accuracy, 
the distorted edges of each image were cropped, retain-
ing a central region of 2560 × 2560 pixels. To further 
facilitate training, the cropped images were divided into 
smaller patches of 640 × 640 pixels. The cropped data-
set was annotated using LabelImg software, where each 
maize tassel was enclosed in a bounding box defined by 
the minimum enclosing rectangle. XML-format label files 
were generated, containing image dimensions (width, 
height, and channels) and bounding box details, such as 

Fig. 1  Workflow diagram
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the target category and coordinates of the top-left and 
bottom-right vertices. To improve model generalizability 
[28], data augmentation techniques—brightness adjust-
ment, vertical flipping, horizontal flipping, random noise 
injection, and translation transformations—expanded 
the annotated dataset to 7,300 images. The XML-format 
annotations were subsequently converted to YOLO-com-
patible TXT format. Finally, the dataset was randomly 
split into training, validation, and test sets in an 8:1:1 
ratio, ensuring balanced representation for robust model 
evaluation.

From an agronomic perspective, maize tassels during 
the detasseling period can be classified into three stages: 
early tasseling, middle tasseling, and late tasseling [29]. 
Early tasseling refers to the period before tassel emer-
gence, while middle tasseling is characterized by the 
male ear being drawn but not yet dispersing pollen. The 
late tasseling stage occurs when there is full tassel emer-
gence and pollen shedding (Fig.  3). Detasseling, which 
involves removing the tassels from female maize plants, 
typically begins in the early tasseling stage with the use 
of ground-based machinery for large-scale removal. 
However, this method can result in missed tassels. Later, 
UAVs are deployed to detect and remove any missed tas-
sels, regardless of their developmental stage. This study 
focuses on the early and middle tasseling stages, cap-
turing images during these two periods for tassel detec-
tion. The constructed dataset includes images from both 
stages, all labeled under the class “detassel”. The model’s 
detection performance is evaluated based on its ability to 

accurately identify and remove tassels from both the early 
and middle stages, ensuring comprehensive detasseling.

During the early and middle tasseling stages, maize tas-
sels are in critical developmental phases that present dis-
tinct challenges for detection. In the early tasseling stage, 
the tassels are still enclosed by green leaves and have not 
fully emerged from the maize canopy. In the middle tas-
seling stage, although the male ear begins to form, the 
tassels are still developing and have not yet shed pol-
len. These stages are crucial for effective detasseling, but 
missed tassels during these periods are difficult to detect 
due to several factors. The inconspicuous color features 
of these tassels, which are concealed within the green 
foliage, make them blend seamlessly with the surround-
ing plant material. Their indistinct morphology further 
complicates detection, as the tassels are not fully visible 
or defined. Finally, the position and shadowing of the tas-
sels, often hidden beneath the maize leaves and obscured 
by overlapping foliage, add to the difficulty of identifying 
them, especially under varying light conditions during 
field operations.

The maize tassel dataset used in this study was ana-
lyzed to accurately detect individual tassels and under-
stand their distribution. It consisted of 7300 images of 
maize seed production tassels, totaling 97,041 labeled 
tassels (Fig.  4). Due to varying height settings during 
image capture, the number of tassels per image ranged 
from 1 to 74, with an average of 13 tassels per image. 
The most common image contained four tassels, appear-
ing in 576 images, or approximately 7.88% of the dataset. 

Fig. 2  Location of the image acquisition area and data acquisition process
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Images with 10 or more tassels accounted for over 50% 
of the total. Statistical analysis revealed that tassels were 
typically densely clustered in most images, with occa-
sional omissions or obstructions caused by overlapping 
leaves.

Construction of the missed tassel detection model
YOLO v5 object detection algorithm
YOLOv5 is a single-stage object detection algorithm 
with a modular architecture comprising input, back-
bone, neck, and head networks. The backbone employs 
the CSPDarknet53 network structure enhanced with 

Fig. 3  Three Stages of tassels and dataset construction

Fig. 4  Statistical analysis of maize tassels in the dataset
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cross-stage partial (CSP) modules and the C3 module for 
improved feature extraction and gradient flow. Addition-
ally, it integrates a spatial pyramid pooling (SPP) layer to 
capture multi-scale features with diverse topologies, ena-
bling robust detection across various object scales [30]. 
The neck utilizes a path aggregation network (PANet) 
to aggregate features from different hierarchical levels, 
facilitating improved object localization and classifica-
tion. The detection head incorporates YOLO-specific 
layers for bounding box prediction and class label assign-
ment, with the introduction of the SPPF (Spatial Pyra-
mid Pooling—Fast) module in YOLOv5v7.0, enhancing 
multi-scale feature extraction while reducing computa-
tional cost [31]. Additionally, YOLOv5 leverages the CBS 
(Conv, Batch Normalization, SiLU) module, which opti-
mizes learning efficiency through its streamlined design.

To address diverse detection requirements, YOLOv5 
provides multiple model versions: YOLOv5n (nano), 
YOLOv5s (small), YOLOv5m (medium), YOLOv5l 
(large), and YOLOv5x (extra-large) [30]. Among these, 
YOLOv5n is the lightest and fastest, making it suitable 
for tasks with strict computational constraints, while 
YOLOv5s strikes a balance between speed, accuracy, and 
resource utilization. This versatility makes YOLOv5n and 
YOLOv5s particularly suitable for UAS-based applica-
tions, such as missed tassel detection, where real-time 
performance is critical. Specifically, YOLOv5s is often 
preferred for agricultural detection tasks due to its 
slightly higher detection accuracy, ensuring reliable per-
formance even in complex field environments.

The preference for YOLOv5 over newer versions like 
YOLOv8 and YOLOv11 is attributed to its optimal bal-
ance of speed, accuracy, and computational efficiency, 
which are crucial for UAS-based agricultural applica-
tions. Although newer versions offer advanced features 
such as anchor-free detection and dynamic feature pyra-
mids, their higher computational demands and increased 
model complexity make them less practical for resource-
constrained environments [32]. In contrast, YOLOv5 
combines a lightweight architecture with a modular 
design and multiple model variants (e.g., YOLOv5s), ena-
bling real-time performance without sacrificing accuracy. 
This capability has been validated in studies such as Pu 
et al. [27] and Song et al. [25], which highlight its effec-
tiveness in agricultural tasks like crop monitoring and 
pest detection. Additionally, YOLOv5’s proven reliabil-
ity, ease of deployment, and robust community support 
further establish it as the ideal choice for dynamic agri-
cultural applications, including missed tassel detection in 
hybrid maize seed production.

Improving tassel detection in dense plantings 
through enhanced feature extraction
In the main hybrid maize seed production regions of 
China, such as the Northwest (e.g., Xinjiang), a high 
planting density of 100,000 to 130,000 plants per hec-
tare is commonly employed. This approach is designed to 
ensure high germination rates and maximize yield poten-
tial. However, this dense planting pattern increases leaf 
and tassel shading during the tasseling stage, complicat-
ing accurate tassel detection and detasseling operations. 
The resulting overlap between adjacent plants elevates 
the risk of missed tassels and false detections. To miti-
gate this challenge, integrating an attention mechanism 
that dynamically enhances the weight of relevant tassel 
features within complex environments can significantly 
improve feature extraction and detection accuracy [33].

Song et  al. [25] proposed a maize tassel detection 
model that enhances feature extraction using SENet, a 
channel attention mechanism. SENet applies global aver-
age pooling (GAP) to each channel and uses two fully 
connected (FC) layers to generate channel weights. While 
this improves feature extraction, the dimensionality 
reduction introduced by SENet reduces the effectiveness 
of capturing dependencies across channels. To overcome 
this limitation, Wang et  al. [21] introduced ECANet, 
which avoids dimension reduction and focuses on local 
cross-channel interactions to improve efficiency and 
model performance.

Figure  5 shows the structure of the ECANet module. 
The module first performs GAP on the input feature 
map F’ (dimensions: H × W × C) to obtain the average 
feature value for each channel, thereby forming a fea-
ture map (Conv, dimensions: 1 × 1 × C). This feature map 
then undergoes a 1 × 1 convolution operation to generate 
a channel attention feature map (Feature, dimensions: 
1 × 1 × C). Subsequently, the channel attention fea-
ture map is fused with the original input feature map F’ 
(dimensions: H × W × C) to obtain a feature map F’’ with 
channel attention (dimensions: H × W × C). This process 
aimed to preserve crucial features while reducing noise 
and redundancy by suppressing irrelevant features.

In this study, ECANet was integrated into the YOLO 
v5s network, particularly during the upsampling and 
downsampling stages of the backbone and neck net-
works. By dynamically weighing the feature maps, 
ECANet enhances the model’s ability to focus on maize 
tassels and minimizes background interference. This 
approach significantly improves the detection of missed 
tassels in complex field environments.
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Enhancing tassel detection with a computationally efficient 
neck
Standard convolution (SC) is a common image-processing 
operation in convolutional neural network (CNN); and its 
core mechanism involves sliding convolutional kernels over 
the input images to extract features. During this process, 
each convolutional kernel performs element-wise multipli-
cation with local regions of the input image and aggregates 
the results to generate output feature maps. This operation 
captures the spatial relationships within the input data, aid-
ing in learning the local features of the image targets. Nota-
bly, the SC employed a parameter-sharing strategy when 
processing channel and spatial information, which resulted 
in a large number of parameters. Equations  (1) and (2) 
describe the parameter count and computational complex-
ity, respectively, of the SC.

(1)Pconv = Cin × Cout × K × K

(2)Sconv = Cin × Cout ×H ×W × K × K

Depthwise separable convolution (DSC) [34] is an 
operation used in convolutional neural networks to opti-
mize computational efficiency. Figure  6 illustrates the 
structure. The core idea is to decompose the SC into 
two independent steps: depth- and point-wise convolu-
tions. Each input channel is convolved independently to 
capture spatial information in the depth-wise convolu-
tion stage. Subsequently, in the point-wise convolution 
stage, a 1 × 1 convolutional kernel is used to linearly com-
bine the output channels of the depth-wise convolution, 
thereby facilitating inter-channel information interaction 
and feature compression. This decomposition reduces 
the number of parameters and computational load, 
enhancing the model’s lightweight and computational 
efficiency; the model is particularly suitable for DL tasks 
on resource-constrained or mobile devices. Equations (3) 
and (4) give the formulas for the parameter quantity and 
computational load, respectively, of the DSC.

(3)Pdpc = Cin × K × K + Cin × Cout

Fig. 5  Structure diagram of ECANet

Fig. 6  Structure diagram of DSC
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Equations  (5) and (6) give the ratios of the numbers 
of parameters and computational costs between the SC 
and DSC, respectively,

where Cin is represented the number of input channels, 
Cout is the number of output channels, H is the height of 
the output feature map, W is the width of the output fea-
ture map, and K the convolutional kernel size.

In the improved YOLOv5 network, the C3 module in 
the neck was replaced with an optimized version (DP_
CSP) utilizing DSC. This change significantly reduced 
computational complexity and model parameters by 
decoupling spatial and channel-wise operations. The 
streamlined feature extraction maintained the model’s 
ability to capture fine-grained details essential for tassel 
detection. This improvement not only enhanced compu-
tational efficiency and inference speed but also ensured 
that detection performance remained robust, making the 
model more effective for detailed identification tasks.

Enhanced detection with improved loss function for tassel 
localization
In object detection tasks, the choice of loss function is 
critical for measuring discrepancies between predicted 
and actual labels. One common evaluation metric is the 
intersection over union (IoU), which quantifies the over-
lap between predicted bounding boxes and ground truth 
boxes. In the YOLO v5s model, the complete intersection 
over union (CIoU) loss function [35] is used to optimize 
box positioning for accurate localization of objects.

However, to improve the model’s accuracy and 
robustness, especially in detecting maize tassels, this 
study replaces CIoU with SCYLLA-IoU (SIoU) [36]. 
SIoU optimizes spatial relationships between pre-
dicted and ground-truth bounding boxes by consider-
ing positional overlap, distance, aspect ratio, and scale 
similarity. Unlike traditional IoU-based functions, SIoU 
incorporates a penalty term that addresses centroid dis-
tance and geometric mismatches, such as aspect ratio 
and scale differences. This makes SIoU more effec-
tive for detecting tassels that exhibit varied scales and 
aspect ratios. The SIoU loss is computed as follows:

(4)
Sdpc = Cin ×H ×W × K × K + Cin × Cout ×H ×W

(5)QP =
Pconv

Pdpc
=

1

Cout
+

1

K 2

(6)QS =
Sconv

Sdpc
=

1

Cout
+

1

K 2

Among them:

In the above formula, LSIoU represents the SIoU loss 
value, while IoU measures the intersection over union 
between the predicted bounding box (A) and the ground 
truth bounding box (B), To address geometric mis-
matches, the penalty term(P) incorporates three com-
ponents: Pdistance, Paspect, and Pscale, weighted by α, β, and 
γ, respectively. Pdistance penalizes the euclidean distance 
between the centroids of the predicted and ground truth 
boxes, Paspect penalizes discrepancies in aspect ratios, and 
Pscale penalizes differences in scale (size).

MT‑YOLO: an improved YOLOv5s model for detecting missed 
tassels
Based on the YOLOv5s model, this study proposes MT-
YOLO, a customized framework designed for detecting 
missed tassels in hybrid maize seed production. Improve-
ments were made using the methods mentioned in Sects.  
3.2.2, 3.2.3, and 3.2.4 to optimize the model, integrating 
three key advancements to address challenges in accu-
racy and computational efficiency. First, the ECANet 
attention mechanism is introduced, refining the model’s 
ability to extract and emphasize subtle, crucial features 
from complex images. This mechanism enables better 
detection of tassels, even when they are occluded or dif-
ficult to distinguish. To further reduce computational 
complexity, SCs in the C3 module were replaced with 
DSC, which separate operations on each input channel, 
significantly reducing the number of parameters while 
maintaining speed and efficiency. Finally, the use of the 
SIoU loss function instead of CIoU enhances the model’s 
robustness and accuracy in localizing tassels, especially 
in densely planted fields. These combined enhancements 
result in a more efficient, accurate model optimized for 
precise and real-time detection of missed tassels, meet-
ing the demands of hybrid maize seed production. 
Figure 7 illustrates the architecture of the proposed MT-
YOLO model.

Network model evaluation index
This study evaluated object detection models using key 
performance metrics, including precision (P), recall (R), 
average precision (AP), F1-score, model size, param-
eters, detection speed, and FLOPs. Precision meas-
ures the likelihood of correctly detecting a target, while 

(7)LSIoU = 1− IoU + P

(8)IoU =
|A ∩ B|

|A ∪ B|

(9)P = αPdistance + βPaspect + γPscale
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recall indicates the model’s ability to detect all targets. 
AP reflects the model’s accuracy for a specific class, cal-
culated as the area under the precision-recall curve, 
typically at an IoU of 0.5. The F1-score, as the harmonic 
mean of P and R, provides a balanced measure of perfor-
mance. Model size denotes the storage space required, 
and parameters represent the number of weights and 
biases in the model, indicating its complexity. Detection 
speed, measured in frames per second (fps), evaluates 
the model’s processing efficiency. FLOPs (floating-point 
operations per second) quantify computational complex-
ity, reflecting the model’s resource requirements during 
operation. Together, these metrics provide a comprehen-
sive evaluation of model accuracy, efficiency, and speed.

Model training environment
In this study, all neural network models were trained 
and tested on a Windows 11 operating system computer, 
using Python 3.7 and PyTorch 1.13 for the DL framework 
construction. Model training used an NVIDIA GeForce 
RTX 3090 GPU and an Intel Core i9-10940X CPU. A 

series of uniform model parameter settings were adopted 
to mitigate overfitting in maize seed production target 
detection tasks. The target confidence threshold, initial 
learning rate, weight decay coefficient, and batch size 
were set as 0.5, 0.001, 0.0005, and 16, respectively. Fur-
thermore, the number of training iterations was set to 
300. Table  1 presents the relevant configurations of the 
training environment.

Model experiments and field test design
Comparative experiments of different attention mechanisms
This study introduced an efficient attention mecha-
nism module, ECANet, which was integrated into the 
YOLO v5s network to enhance the model’s performance 
in detecting maize tassels in complex maize seed pro-
duction environments. To verify the impact of adding 
ECANet to the detection performance of the model, 
this study compared it with three mainstream attention 
mechanisms: the SENet [37], convolutional block atten-
tion module network (CBAMNet) [38], and coordinate 
attention network (CANet) [39]. The four attention 

Fig. 7  Structure diagram of MT-YOLO
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mechanisms were uniformly evaluated on the maize tas-
sel images dataset constructed in this study.

Ablation experiment
This study validates the effectiveness of the improved 
strategy using ablation experiments. This strategy 
included the introduction of the ECANet attention 
mechanism, the replacement of the SC with a DSC 
and change of the loss function. The experiments were 
divided into four groups:

(1)	  The original YOLO v5s model.
(2)	 The model based on the original YOLOv5s model, 

replacing the SC with DSC
(3)	 The model in Group 2 that incorporates the 

ECANet module.
(4)	 The model in Group  3 that replaced CIoU with 

SIoU, i.e., the MT-YOLO model

Field test
To validate the performance of the proposed MT-YOLO 
model for detecting missed tassels in hybrid maize fields, 
field tests were conducted using a DJI Phantom 4 RTK 
UAV (Fig.  8). The UAV was employed to capture high-
resolution aerial images of the test plots. These images 
were subsequently analyzed using the MT-YOLO model 
to identify missed male tassels and determine their pre-
cise locations.

Four test plots (S1, S2, S3, and S4) were selected for 
evaluation, each representing a different hybrid maize 
female parent variety. Each plot covered an area of 663 
m2, with a row spacing of 45 cm and a plant spacing of 20 
cm. Manual bulk detasseling was carried out in all plots 
prior to the field tests, leaving behind a number of missed 
tassels to be detected during the study.

The UAV flew at a height of 3 m above the maize can-
opy, with a flight speed of 0.5 m/s, to ensure the cap-
ture of detailed and clear images. These images were 

processed offline using the MT-YOLO model, which 
identified missed tassels and generated their georefer-
enced locations based on RTK positioning data from the 
UAV.

Ground inspections were conducted to validate the 
tassel locations detected by the MT-YOLO model. Per-
sonnel equipped with GNSS differential positioning 
equipment (LTK-9980) marked the actual locations of 
missed tassels, which were then compared with the mod-
el’s detection results. To assess the model’s performance, 
the missed rate (M) was calculated, representing the pro-
portion of missed tassels not detected by the model. Each 
test plot was inspected three times to ensure compre-
hensive detection accuracy, and the results from the MT-
YOLO model were compared with manual inspections to 
provide valuable insights into its effectiveness in detect-
ing missed tassels.

where N represents the total number of missed tassels 
identified through human inspections, and NR denotes 
the number of missed tassels correctly detected by the 
MT-YOLO model. This metric quantifies the proportion 
of missed tassels that were not detected by the model 
after the detection process, providing a clear assessment 
of its effectiveness in hybrid maize seed production fields.

Results and discussion
Comparative experimental results of different attention 
mechanisms
Based on the updated data in Table 2, integrating atten-
tion mechanisms into YOLO v5s consistently improved 
its detection performance. Among the models, YOLO 
v5s-ECANet delivered the best results, achieving an AP 
of 92.3%, Precision of 89.2%, and Recall of 91.7%. Com-
pared to the baseline YOLO v5s (AP: 91.8%, Precision: 
88.4%, Recall: 90.5%), these improvements highlight 

(10)M =
N − NR

N
× 100%

Table 1  The relevant configurations of the training environment

Training environment configuration Name Detailed description

Hardware GPU NVIDIA GeForce RTX 3090

CPU Intel Core i9-10940X

Software Operating system Windows 11

Programming language version Python 3.7

Deep learning framework PyTorch 1.13

NVIDIA CUDA toolkit CUDA 11.7

Network Epoch 300

Batch size 16
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ECANet’s effectiveness in enhancing detection accuracy 
and reliability.

When compared to other attention mechanisms, 
ECANet outperformed YOLO v5s-CANet, YOLO v5s-
SENet, and YOLO v5s-CBAMNet across all metrics. 
Its ability to achieve a strong balance between precision 

and recall makes it particularly well-suited for reduc-
ing missed detections and false positives in maize tassel 
identification. ECANet’s superior performance is attrib-
uted to its efficient channel-wise attention mechanism, 
which strengthens the most relevant feature channels 
while maintaining computational efficiency. These results 
establish ECANet as the most effective choice for integra-
tion into the YOLO v5s network, ensuring a robust and 
precise detection framework for practical applications.

Ablation experiment results
Table 3 illustrates the ablation experiment results for the 
YOLO v5s model. Group 2, with the addition of DSC, 
reduced parameters by 14.55%, improved FLOPs effi-
ciency by 13.29%, and achieved an AP of 91.3%. Group 
3 introduced ECA, further improving the AP to 92.9% 
while maintaining a 12.03% improvement in FLOPs 
efficiency compared to the baseline. Finally, Group 4 

Fig. 8  Field test

Table 2  Comparisons of the four attention mechanism modules

Group 
number

Model AP/% Precision/% Recall/%

1 YOLO v5s 91.8 88.4 90.5

2 YOLO v5s-CANet 92.1 88.7 90.4

3 YOLO v5s-SENet 92.3 89.0 90.9

4 YOLO v5s-CBAMNet 92.0 88.8 90.8

5 YOLO v5s-ECANet 92.3 89.2 91.7
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replaced CIoU with SIoU, resulting in the MT-YOLO 
model, which achieved the highest AP of 93.1%, with a 
14.54% reduction in parameters and a 12.03% improve-
ment in FLOPs efficiency compared to the baseline.

These results demonstrate a progressive enhancement 
in both accuracy and computational efficiency. The inte-
gration of DSC significantly reduced parameters while 
maintaining reasonable performance, and the addition of 
ECA effectively enhanced feature representation, further 
improving the detection accuracy. Replacing CIoU with 
SIoU in the final model provided a refined loss calcula-
tion, boosting AP while preserving computational effi-
ciency, making MT-YOLO the optimal configuration in 
terms of both accuracy and resource utilization.

Comparing the performance of the MT‑YOLO model 
with other models
The performance comparison in Table  4 highlights the 
advantages of the MT-YOLO model across a range of 
metrics when compared to Faster R-CNN, SSD, YOLO 
v5n, YOLO v5s, YOLO v7, and YOLO v8s. MT-YOLO 
achieved the highest AP (93.1%), Precision (93.3%), 
Recall (91.6%), and F1-score (92.4%) among all evalu-
ated models. These results demonstrate MT-YOLO’s 
enhanced capability to accurately detect maize tassels, 
particularly in challenging scenarios such as detecting 
tassels of various shapes, tassels affected by uneven light-
ing or shadows under strong light, and small target tas-
sels in complex backgrounds.

Compared to YOLO v5s, MT-YOLO showed a 1.3% 
improvement in AP, a 4.9% increase in Precision, a 1.1% 
enhancement in Recall, and a 3.0% boost in F1-score, 
highlighting its balanced optimization of detection accu-
racy. Notably, MT-YOLO’s detection speed of 124 fps 
remains competitive, surpassing most models except for 
YOLO v5n, which prioritizes speed by utilizing fewer 
parameters at the expense of accuracy. MT-YOLO’s 
robust detection framework leverages architectural 
improvements like ECANet and SIoU to ensure better 
feature representation and loss calculation, enhancing 
detection consistency across varying tassel characteris-
tics and environmental conditions.

Impact of sunlight and shadows on tassel detection 
performance
Figure  9 demonstrates the models’ detection per-
formance under sunlight and shadow interference. 
MT-YOLO shows a marked improvement, effectively 
reducing missed detections (yellow boxes) in areas 
with strong sunlight or deep shadows. YOLO v5s, how-
ever, struggles with such conditions, frequently failing 
to detect tassels in regions of intense light or darkness. 
This limitation is likely due to its inability to extract suf-
ficient features under extreme lighting variations. MT-
YOLO, with its improved architectural components such 
as ECANet and SIoU, captures richer feature representa-
tions, enabling accurate detections even in challenging 
lighting environments.

Table 3  Results of the ablation experiment

“√” means that the improvement factor was used, and “/” means that the improvement factor was not used

Group number YOLO v5s DSC ECA SIoU AP/% Parameters FLOPs/G

1 √ / / / 91.8 7,012,822 15.8

2 √ √ / / 91.3 5,992,278 13.7

3 √ √ √ / 92.9 5,993,139 13.9

4 √ √ √ √ 93.1 5,993,139 13.9

Table 4  Performance comparison of the four detection models

Models AP/% Precision/% Recall/% F1-score/% Model size/MB Detection 
speed/
fps

Faster R-CNN 80.1 79.5 75.0 77.2 108 47

SSD 77.5 73.2 80.4 76.6 90.6 65

YOLO v5n 90.3 88.0 86.6 87.3 3.9 132

YOLO v5s 91.8 88.4 90.5 89.4 14.4 118

YOLO v7 92.4 90.1 87.5 88.8 74.8 56

YOLO v8s 91.5 91.4 89.8 90.6 22.5 113

MT-YOLO 93.1 93.3 91.6 92.4 12.4 124
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Detection performance for tassels with complex shapes
Figure  10 compares the detection performance for tas-
sels with complex characteristics. For hollows caused 
by detasseling, YOLO v5s often misclassifies the gaps in 
maize plants as tassels, leading to false detections (green 
boxes), due to its limited ability to differentiate struc-
tural gaps. MT-YOLO effectively minimizes these errors 
by leveraging enhanced feature extraction. For incom-
plete target shapes along edges, YOLO v5s struggles with 
both missed and false detections, failing to recognize 
partial features near boundaries. MT-YOLO addresses 
this issue with improved attention mechanisms, ensur-
ing better accuracy. In cases of occluded tassels, YOLO 
v5s frequently misses partially visible targets or misclas-
sifies fragments, while MT-YOLO achieves more consist-
ent detections through superior spatial and contextual 
understanding.

Field evaluation of missed tassel detection accuracy
Figure 11 illustrates the process of detecting missed tas-
sels in maize fields. Table 5 presents the field test results, 
showing a mean missed rate of 9.1% for the detection 
system. The MT-YOLO model effectively identified most 

missed tassels, with variations across plots. Notably, in 
plot S1, the system not only detected all ground-truth 
missed tassels but also identified an additional missed 
tassel overlooked by human workers, demonstrating its 
potential for enhanced detection capabilities.

Analysis revealed that the primary cause of missed 
detections was related to the height disparity among 
maize plants. Dwarf maize plants, measuring between 
1.4 m and 1.6 m, were more likely to be missed compared 
to taller plants (1.8 m to 2.0 m), due to the UAS’s aerial 
perspective. These results indicate that the combination 
of UAVs and deep learning detection models offers sig-
nificant potential for replacing manual inspections, ena-
bling rapid and accurate detection of missed tassels in 
maize fields.

Limitations of the missed tassel detection model
The proposed MT-YOLO model for maize tassel detec-
tion has several limitations that need to be addressed to 
enhance its performance and adaptability. First, the data-
set lacks diversity in terms of planting agronomy, maize 
varieties, and flight altitudes, limiting the model’s ability 
to adapt to different field conditions. For example, maize 

Fig. 9  Detection performance of tassels affected by sunlight and shadows
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Fig. 10  Detection performance of tassels with different shapes

Fig. 11  Field-missed tassel detection

Table 5  Field test results comparison of tassel detection accuracy

Test plots Total missed tassels 
(ground truth)

Total detected by 
UAS

Correct detections False detections Missed rate/%

S1 26 29 24 5 7.7

S2 17 19 15 4 11.8

S3 14 15 13 2 7.1

S4 20 19 18 1 10.0

Mean missed rate / / / 9.1
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varieties with large open leaves and varying tassel mor-
phologies are underrepresented, which constrains the 
model’s generalizability. Second, the dataset only anno-
tates tassels under a single category (“detassel”), which 
fails to capture distinctions such as developmental stages, 
thereby limiting the precision of detasseling operations. 
Third, data collection is currently conducted at lower 
altitudes, restricting the photographed area and reducing 
inspection efficiency. Expanding data collection to higher 
altitudes would cover a larger area per flight, improving 
operational efficiency. Fourth, the current system lacks 
robust mechanisms for batch processing and precise cor-
rection of exported positional data, which are crucial for 
improving the accuracy of tassel localization and ena-
bling efficient large-scale operations. Lastly, the UAS’s 
top-down view faces significant challenges in detecting 
tassels on dwarf maize plants, as these tassels are often 
occluded by leaves or fall outside the optimal detection 
range, leading to higher omission rates. Addressing these 
challenges will require expanding and refining the data-
set, improving data processing pipelines, and optimizing 
the model for diverse field conditions and operational 
requirements.

Conclusions
The MT-YOLO model presents a significant advance-
ment in the automated detection of missed tassels during 
hybrid maize seed production. By addressing challenges 
such as small target detection, varying tassel morpholo-
gies, and environmental interferences, MT-YOLO out-
performs existing models in both accuracy and speed. 
Its integration with UASs offers a practical approach 
to reducing labor dependency and enhancing detas-
seling efficiency. Field validations confirm its applica-
bility in real-world scenarios, achieving a mean missed 
rate of 9.1%. Future work will focus on further refining 
the model to handle more complex field conditions and 
exploring its integration into broader agricultural auto-
mation systems.

To enhance the adaptability and performance of the 
MT-YOLO model for maize tassel detection, future 
research should focus on expanding the dataset to 
include diverse maize varieties, planting agronomy, and 
tassel morphologies, with annotations for developmental 
stages to improve generalizability and precision. Opti-
mizing data collection through higher-altitude flights and 
multi-angle imaging can increase operational efficiency 
and mitigate challenges related to occlusions, particularly 
for dwarf maize plants. Developing robust data process-
ing pipelines, including batch processing and positional 
correction mechanisms, will enable accurate tassel locali-
zation and efficient large-scale operations. Furthermore, 
refining the model to handle environmental complexities 

such as occlusions, variable lighting, and dense planting 
configurations through advanced attention mechanisms 
and transfer learning is essential. Addressing these areas 
will strengthen the model’s scalability and integration 
into automated agricultural systems, ensuring broader 
applicability and improved efficiency in hybrid maize 
seed production.
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