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Abstract
The enhancement of rice quality stands as a pivotal focus in crop breeding research, with spectral analysis-
based non-destructive quality assessment emerging as a widely adopted tool in agriculture. A prevalent trend 
in this field prioritizes the assessment of effectiveness of individual spectral technologies while overlooking the 
influence of sample type on spectral quality testing outcomes. Thus, the present study employed Microscopic 
Hyperspectral Imaging, Raman, and Laser-Induced Breakdown Spectroscopy (LIBS) to acquire spectral data from 
paddy rice, brown rice, polished rice, and rice flour. The data were then modeled and analyzed with respect to 
the amylopectin and protein contents of the rice samples via regression methods. Correlation analysis revealed 
varying degrees of correlation, both positive and negative, among the three spectral techniques and the analytes 
of interest. LIBS and Raman spectroscopy demonstrated stronger correlations with the analytes compared to 
microscopic hyperspectral imaging. Based on the selected correlation variables, feature screening and regression 
modeling were conducted. The modeling results indicated that microscopic hyperspectral data modeling yielded 
the lowest coefficient of determination of R² = 0.2, followed by Raman data modeling result was higher than it, 
which was about 0.5. The modeling effect of polished rice is the best. LIBS data modeling performed best, with a 
coefficient of determination of 0.6. The influence of different sample types on the modeling results was less than 
that of Raman spectroscopy, and modeling results of grains were better. The feature matching analysis of Raman 
and libs spectroscopy techniques showed that there were spectral variables that could match amylopectin and 
protein in the features obtained by multiple modeling statistics, but some modeling variables failed to match. LIBS 
matched more variables than Raman. These findings provide valuable insights into the application effectiveness of 
different spectral techniques in detecting rice contents across diverse sample types.

Exploring the potential of microscopic 
hyperspectral, Raman, and LIBS 
for nondestructive quality assessment 
of diverse rice samples
Jing Guo1,4†, Sijia Jiang2†, Bingjie Lu3,4, Wei Zhang2, Yinyin Zhang1,4, Xiao Hu1,4, Wanneng Yang1,4, Hui Feng3,4* and 
Liang Xu2*

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13007-025-01345-0&domain=pdf&date_stamp=2025-2-20


Page 2 of 20Guo et al. Plant Methods           (2025) 21:25 

Introduction
Rice stands as one of the paramount food crops glob-
ally, supporting nearly half of the world’s population [1]. 
With improvements in living standards, there has been a 
notable increase in the demand for high quality rice [2].
Rice quality critically influences consumer preferences 
and varietal breeding strategies, serving as a cornerstone 
for sustainable global food supply chains [3]. Starch and 
protein are two essential components that directly affect 
rice quality. Starch comprises 80–90% of the chemical 
composition of rice, with amylose and amylopectin being 
its primary constituents. The crystallinity and thermal 
stability of starch granules are critical factors influencing 
rice quality. Protein, the second most abundant compo-
nent, accounts for approximately 6%~9% of the total rice 
content, and affects rice quality by regulating the gelati-
nization characteristics of rice starch. Consequently, the 
extraction, quantification, and analysis of starch and pro-
tein in rice constitute the cornerstone for increasing rice 
quality.

Spectral technologies have revolutionized crop analy-
sis through non-destructive, rapid detection capabilities. 
Gámez et al. established hyperspectral reflectance-bio-
mass correlations in alfalfa using full-band field spec-
troscopy [4], while Wanyu Li and colleagues developed 
a multispectral-driven “spectral-physiological-protein” 
model for monitoring rice grain protein dynamics. Con-
currently, Zhang linked UAV-acquired vegetation indices 
to photosynthetic parameters across rice growth stages, 
enabling diurnal canopy photosynthesis prediction [5]. 
Hyperspectral imaging has distinguished itself as a prom-
inent method for detecting quality attributes in agri-
cultural products, boasting a plethora of spectral bands 
alongside high image resolution, providing extensive 
spectral and spatial information [6]. Microscopic hyper-
spectral systems synergize the analytical strengths of 
hyperspectral imaging and optical microscopy, enabling 
non-destructive characterization of micro-scale mate-
rial properties. Yaodi Zhu et al. introduced a method for 
the rapid determination of spore germination utilizing 
microscopic hyperspectral imaging technology. By inte-
grating spectral variables with imaging data to develop a 
predictive model, significantly enhanced the accuracy of 
forecasting spore germination [7].

Raman spectroscopy, a nondestructive technique lever-
aging inelastic light scattering, is renowned as fingerprint 
spectroscopy due to the unique Raman shifts dictated by 
molecular structures and vibrational modes. The inten-
sity of Raman signals is directly proportional to the num-
ber of molecules participating in the scattering process, 
rendering it a suitable tool for the quantitative analysis 

of substances [8]. Gulce Ogruc Ildiz et al. utilized micro-
scopic Raman spectroscopy in conjunction with principal 
component analysis to measure starch and protein con-
tents in various maize kernel varieties [9]. while Wang et 
al. successfully identified rice samples of the same variety 
but from different producing areas using similar method-
ologies [10].

Laser-induced breakdown spectroscopy (LIBS) has 
recently become a significant technique for elemen-
tal analysis. It uses a laser pulse to create a plasma from 
the sample, which emits a characteristic spectrum. This 
spectrum is then analyzed by a high-resolution spec-
trometer to determine the elements and concentrations 
in the sample. It is a spectral technique capable of simul-
taneous and rapid analysis of multiple elements without 
the need for sample preparation [11]. Hou et al. proposed 
an inverse Fourier transform method based on LIBS for 
batch identification of rice seeds [12]. Milena R. Martelli 
et al. employed LIBS technology to investigate the cohe-
sion of wheat grain tissue, highlighting the potential of 
LIBS for expediting structural analysis of plant materials 
[13].

While spectral techniques have exhibited significant 
potential for detecting crop quality, the utilization pre-
dominantly occurs individually in scenario-specific 
contexts, with a notable dearth of comparative analy-
ses among distinct spectral methodologies within this 
domain. Furthermore, these applications generally focus 
on a particular sample type that undergoes processing, 
while the attention given to the original state samples and 
samples at each stage of processing remains limited [14–
17]. It is worthwhile to explore whether these different 
sample types affect the results of crop quality testing and 
whether they can provide information for nondestruc-
tive testing of crop quality. Therefore, investigating these 
aspects could hold the promise of exploring broader pos-
sibilities for the application of spectral techniques in the 
field of crop grain quality detection.

In summary, the study employed three spectral tech-
niques to establish spectral-quality index regression 
models with four types of rice grain samples, respectively. 
Aiming to investigate the differences in various spectral 
methodologies and the influence of sample types on the 
outcomes of nondestructive rice quality assessment and 
serves as a valuable reference for the application of spec-
tral technologies in advancing crop quality detection 
capabilities.

Keywords Rice quality detection, Raman, LIBS, Microscopic hyperspectral, Regression analysis
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Materials and methods
Sample preparation
The study sourced 533 rice core germplasm resources 
from the Crop Phenotype Center of the National Key 
Laboratory of Crop Genetic Improvement at Huazhong 
Agricultural University. From this pool, 20 diverse rice 
varieties were randomly selected. For each variety, five 
seeds were designated as experimental paddy rice sam-
ples. Other seeds were then hulled to produce brown 
rice, from which another five seeds were selected as 
brown rice experimental samples. The remaining brown 
rice was milled to obtain polished rice, with five seeds 
per variety used as polished rice experimental samples. 
Lastly, the leftover polished rice was ground into flour, 
and 4 ~ 6 g of this flour was compressed into round sheets 
for storage as rice flour experimental material.

Instruments and parameters
In this study, three distinct spectral detection instru-
ments were utilized: the portable Raman spectrometer, 
the LIBS spectrometer and the microscopic hyperspec-
tral spectrometer. These spectrographs were indepen-
dently developed by the Changchun Institute of Optics, 
Fine Mechanics and Physics, Chinese Academy of Sci-
ences, the Advanced Spectral Technology and Applica-
tion Innovation Room.

The portable Raman spectrometer incorporates modu-
lar components including a laser, a dispersion unit, and 
an external optical path. It features a laser wavelength of 
785 nm, an adjustable laser power up to 500mW, a spec-
tral range of 200 ~ 2700 cm-1, with a spectral resolution 
between 6 cm⁻¹ and 8 cm⁻¹. The integration time of the 
system is adjustable, ranging from 4 ms to 120 s. Signal-
to-noise ratio > 3000:1, spectral stability of o/u < 0.5% ( 
COT 8 h ).

The LIBS system consists of a laser, an optical system, 
a spectrometer, a computer and a mobile power supply. 
The laser used is a Q-switched Nd: YAG solid-state laser 
(CFR200,Quantel, Paris, France) with a laser wavelength 
of 1064 nm, a beam diameter of 7.1 mm, a pulse width of 
7.1 ns, a working frequency of 20 Hz, laser pulse energy 
of 200 mJ. The spectrometer uses a four-channel modu-
lar fiber optic spectrometer (LIBS2500+) with channel 
wavelength ranges of 186 ~ 304, 300 ~ 402, 400 ~ 487, 
485 ~ 1000. The spectral integration time is 1ms.

The microscopic hyperspectral imager (CLH-M-
D-1) consists of an integrated push-broom hyperspec-
tral imaging module, a camera, a microscope, a halogen 
light source, and an externally connected computer. The 
hyperspectral module operates within a spectral range 
of 400 ~ 1000 nm, a spectral resolution > 2.8 nm, a spatial 
resolution > 1  μm, with a total of 300 spectral channels 
and 480 spatial channels incorporated. The microscope 
provides a field of view ranging from 0.22 to 4.4 mm. The 

detector employed is a CMOS sensor, and the illumina-
tion system utilizes a 12 V/100 W halogen lamp.

The PertenDA7250 near-infrared grain analyzer was 
employed to quantify the percentages of amylopectin and 
protein content in rice samples. The instrument features 
a wavelength rang of 950 ~ 1650 nm, an adjustable spec-
tral resolution ranging from 0.1 to 10 nm, a scan duration 
of 15 s per scan, and an analysis time of six seconds.

Technical route of the study
This section outlines the technical approach employed 
in this research, including sample preparation, spec-
tral acquisition, parameter extraction, rice quality index 
determination, and model development (Fig.  1). Sample 
processing involves a series of steps to convert paddy rice 
into rice flour. The spectral data were acquired via three 
different spectral systems. Following acquisition, these 
spectral datasets are analyzed to extract relevant spectral 
parameters. The rice quality index was quantified using a 
precise near-infrared grain analyzer. Ultimately, a regres-
sion model is developed, with the extracted spectral 
parameters serving as independent variables and the rice 
quality index as the dependent variable.

Spectral data collection and quality index measurement
Microscopy hyperspectral spectral data acquisition
The sample was placed on a glass slide, aligned with 
the light source and lens, and the appropriate objective 
lens magnification was adjusted before signal acquisi-
tion. Spectral curves and image data were collected at 
5X, 10X, 20X, and 50X objective lens magnifications for 
each sample. For each type of paddy rice, brown rice, and 
milled rice, 20 sets of replicates were performed, with 5 
samples per variety. For rice flour samples, a single sam-
ple was utilized for each variety, resulting a total of 5 sets 
of replicates.

Raman spectral data acquisition
The acquisition instrument was set up with a laser power 
of 200mW, an integration time of 5 s, and a peak-seeking 
threshold of 30. It featured automated baseline correction 
during spectrum acquisition. The samples were placed on 
a flat surface, and the handheld Raman laser probe was 
aligned vertically with the target sample for detection. 
Spectral acquisition was performed at 5 different posi-
tions for each sample to ensure comprehensive coverage. 
For each type of paddy rice, brown rice, and polished rice, 
25 sets of replicates were conducted, with 5 samples per 
variety. For rice flour samples, a single sample was used 
for each variety, resulting in 5 sets of replicates.

LIB spectral data acquisition
For LIBS data acquisition, the laser output energy 
focused on the sample was set to 106 mJ, with an output 
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pulse frequency of 20  Hz. The integration time of the 
spectrometer was set to 1 ms, and the integration delay 
was set to 1 µs to ensure a stable plasma. The sample 
was securely positioned at the laser port, and the laser 
was activated in continuous excitation mode for spec-
tral acquisition. Each sample was subjected to five con-
secutive laser pulses, resulting in the acquisition of five 
spectral curves as replicate measurements. In total, there 
were 25 replicate samples for each category of paddy rice, 
brown rice, and polished rice across all varieties, as well 
as 5 replicate samples of rice flour.

Determination of rice quality index
The rice flour samples were dispensed into the detec-
tion tanks, filling them to capacity. A total of 3 detection 
tanks were prepared for each variety to ensure triplicate 
repetitions. Each filled detection tank was then placed 
into the near-infrared grain analyzer, and the appropriate 
model was selected to initiate the quality index detection 
process.

Data processing and analysis
Spectral data preprocessing and parameter extraction
The microscopic hyperspectral data was analyzed using 
ENVI5.3 software, with all pixels in the captured images 
defined as the region of interest (ROI), considering the 
sample target size. Spectral parameters including reflec-
tivity (R), its first and second derivatives (d(R) and dd(R)), 
and logarithm (lg(R)) were computed and normalized to 
unit vectors for subsequent analysis.

Raman spectral data visualization was conducted using 
RamanTools software. Given the inherent weakness and 
susceptibility of Raman scattering signals to various 
influences, a manual screening process excluded anoma-
lous spectral signals [18]. Savitzky-Golay (SG) filtering 
with a window size of 7 and polynomial order of 3 was 
applied to enhance the signal-to-noise ratio, smoothing 
the spectral data and improving its quality.

Raman intensity (I), its derivatives (d(I) and dd(I)), and 
logarithm (lg(I)) were calculated as spectral indices for 
regression analysis, providing valuable information about 
the chemical bonds and molecular structures present in 
the samples. These indices were then integrated and nor-
malized using the maximum value position in each sam-
ple as the benchmark. This normalization accounted for 
deviations from external factors or intramolecular inter-
actions affecting Raman signal intensity. To amplify inter-
sample differences and facilitate accurate comparison, 
data scaling was applied across different varieties due to 
the low signal intensity and crucial intensity variations 
among them. This step enabled more precise correlation 
and quantitative analyses, identifying key differences in 
chemical composition and structure.

In LIBS laser ablation excitation, spectral signals are 
susceptible to interferences from instrumentation, back-
ground, and sample properties, which can cause devia-
tions in results [19]. To address these challenges, outlier 
removal using triple standard deviation and noise filter-
ing via SG (Savitzky-Golay) smoothing with a window 
size of 7 and polynomial order of 3 are applied. There is a 

Fig. 1 Technical route of the study. The comprehensive process encompasses the refinement of raw materials, acquisition of spectral signals, processing 
of spectral data, correlation analysis between rice quality indices and spectral data, and the development of regression models
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linear relationship between the intensity of the elemental 
spectral lines and the concentration of the analyte with-
out self-absorption. Therefore, the spectral intensity (C) 
is used as the available spectral variable. Additionally, the 
logarithm of intensity (lg(C)), first derivative of intensity 
(d(C)), and second derivative of intensity (dd(C)) were 
calculated as spectral indices for regression analysis.

All spectral indices undergo integration and unit vector 
normalization to ensure that they were on a comparable 
scale. Data scaling was also indispensable among differ-
ent varieties to amplify inter-sample differences and facil-
itate accurate comparison.

Correlation analysis between spectral data and quality 
indicators
To efficiently identify pertinent variables, Pearson cor-
relation coefficients were calculated between the spec-
tral characteristics of paddy rice, brown rice, polished 
rice, and rice flour and the contents of amylopectin and 
protein. Variables with high correlations, defined by a 
threshold of 0.2, were retained, while those with lower 
correlations are filtered out. These retained variables 
were then utilized in subsequent regression analyses.

Regression modeling of spectral data and quality indicators
Regression modeling were performed separately for 
amylopectin and protein content of rice, using spectral 
parameters of distinct spectral types as independent vari-
ables. Given the sample size constraint of this study, the 
selection of modeling techniques is crucial.

These regression methods were employed in this study: 
Adaptive Boosting (AdaBoost) regression: A sequential 
ensemble method that leverages machine learning to 
create a robust predictor by randomly integrating weak 
learners from the dataset [20]. AdaBoost regression pos-
sesses strong applicability and resistance to overfitting, 
making it ideal for studies with limited sample sizes [21].

Bayesian regression: A machine learning algorithm 
that integrates Bayesian statistics with linear modeling. 
It exhibits excellent applicability for scenarios with scarce 
data and inadequate prior knowledge [22]. Least absolute 
shrinkage and selection operator (Lasso) regression: This 
method applies an L1 penalty term to the partial least 
squares (PLS) model to identify and filter out irrelevant 
variables, achieving better performance than PLSR [23]. 
Ridge regression: A biased estimation method for analyz-
ing multicollinearity data, tailored for multicollinearity 
data, sacrifices some least squares unbiasedness for prac-
ticality, enhancing model simplicity and robustness [24].

In addition, linear regression, as the most common 
regression method, served as a comparison and refer-
ence in this study to ensure a comprehensive and objec-
tive analysis of the relationship between spectral data and 
quality indicators of rice.

Given the constraints of the sample size in this study, 
it is imperative to limit the number of independent vari-
ables in the model to prevent overfitting. Adhering to the 
principle that the number of variables should not exceed 
one-tenth of the sample size, 1–2 modeling variables 
were selected. These variables were determined through 
the Competitive Adaptive Reweighted Sampling (CARS) 
feature selection method. Following the CARS feature 
screening process, it is often the case that a relatively 
large number of variables are identified. If the number 
of filtered variables exceeds two, a subset of 1–2 vari-
ables were selected randomly and cyclically for model 
construction.

For regression modeling, a five-fold cross-validation 
approach was adopted. The dataset was divided into 
five equal groups, each containing four samples, where 
four groups were used as training data and the remain-
ing group as testing data. This procedure was repeated 
five times, ensuring that each group served as the test set 
once, and the average value was taken as the final model-
ing result. Performance metrics, including the coefficient 
of determination (R²), root mean square error (RMSE), 
and relative prediction deviation (RPD), were computed 
for both the training and test sets based on the predicted 
and actual values.

All analyses were carried out in a Python 3.7 environ-
ment, utilizing libraries such as Scikit-learn, NumPy, and 
Pandas to ensure computational efficiency and facilitate 
data manipulation.

Results and discussion
Microscopic hyperspectral original curve
The microscopic hyperspectral reflectance curves of 20 
varieties of paddy rice, brown rice, polished rice, and 
rice flour samples exhibited a consistent trend across dif-
ferent treatments but vary in peak reflectance (Fig.  2). 
Specifically, paddy rice displayed lower reflectance due 
to the rough surface texture. Conversely, rice flour, with 
a smooth surface, enhanced reflectance peaks. Brown 
and polished rice show only minor differences in their 
reflectance curves. There are noticeable disparities in the 
spectral curves among different varieties of the same type 
of samples, particularly within the 500 ~ 700  nm range. 
These distinct reflectance and radiation characteristics 
of various materials could be attributed to molecular, 
atomic, and ionic lattice vibrations. Even within the same 
biological tissue, structural and compositional differences 
lead to unique reflectance spectra [25]. Therefore, the 
variations observed in the reflectance curves reflect the 
intricate differences in the structure and composition of 
various rice types and varieties.
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Raman data analysis
Raman spectrum original curve
The Raman spectra of the 20 varieties of paddy rice, 
brown rice, polished rice, and rice flour samples exhib-
ited distinct features (Fig.  3). The curve for paddy rice 
displayed a pronounced peak within the 200–500  cm⁻¹ 
range, accompanied by a densely oscillating waveform 
in the 1500–2500  cm⁻¹ range. This phenomenon could 
be attributed to the dense vibrational activity of polysac-
charide molecules within the samples. Additionally, the 
irregular grooves on the paddy rice surface might influ-
ence the morphology of the spectral curve. The spectra 
of brown and polished rice shared similar characteristics 
but differ in intensity, which might be due to the differ-
ences in surface properties between brown rice and 

polished rice [2]. Rice flour, derived from polished rice, 
maintains the same composition but exhibited a distinct 
spectral profile, particularly a prominent and broadened 
peak within the 200–500  cm⁻¹ range. Furthermore, the 
spectral curves of different varieties of rice flour were 
not identical in shape. Research highlights that grinding 
polished rice into flour generates heat and mechanical 
energy, leading to disruptions in the starch crystal struc-
tures, increased starch damage, and uneven particle size 
distribution. A significant amount of mechanical heat 
also accelerates fatty acid oxidation [26]. Raman, which 
is sensitive to molecular structure and state, could detect 
these alterations [27].

A comparative analysis was conducted on the aver-
age Raman spectral curves of paddy rice, brown rice, 

Fig. 2 Reflectance curves of microscopic hyperspectral data across 20 rice varieties. (a)paddy rice, (b)brown rice, (c)polished rice, (d)rice flour. Different 
colors in the figure represent different rice varieties
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polished rice, and rice flour (Fig.  4). The spectral curve 
of paddy rice exhibited minimal overlap with those of the 
other three categories, underscoring the distinct compo-
sitional differences among them. Inspecting the overlap 
of spectral curves of brown rice, polished rice and rice 
flour, it is revealed that the characteristic peak posi-
tions of the these sample were consistent in the region 
of 550 ~ 2000  cm− 1, which indicated that the data of 
this study were in line with the real situation and were 
effective.

Raman curve band analysis and material attribution
The Raman shift acts as an indicator of the motion of 
specific molecules, making the analysis of characteristic 
peaks within the Raman curve vital for understanding 
molecular composition. To assign these characteristic 
peaks in the Raman spectral curves of the four forms 
(Fig.  5), the NGSLabSpe software was employed. For 
optimal peak detection, the parameters were set as 

follows: the peak finding function was GaussLoren, the 
peak level was set to 2, the size was set to 6, and the num-
ber of iterations was set to 20. For detailed information 
on specific peaks and their attributions, please refer to 
Table 1.

Rice husk is composed mainly of cellulose, hemicel-
lulose, and pectin. The complex vibrational modes of 
natural cellulose closely mirror those of hemicellulose, 
encompassing CCC, COC, OCC, and OCO skeleton 
bending, as well as methane bending (CCH and OCH), 
and CC and CO stretching. The spectral characteristics 
of natural cellulose are relatively subtle. In the range of 
250 to 500 cm⁻¹, nearly all molecules participate in these 
motion modes, resulting in the formation of numerous 
characteristic peaks. Between 500 ~ 850  cm⁻¹, bands are 
observed that correspond to COC glycosidic bond vibra-
tions, CCH bending, and COC plane symmetry at spe-
cific frequencies such as 496, 520, 596, 641, and 820 cm⁻¹ 
[28]. From 950 to 1500 cm⁻¹, densely packed bands arise 

Fig. 3 Raman spectral curves of 20 rice varieties. (a)paddy rice, (b)brown rice, (c)polished rice, (d)rice flour. Different colors in the figure represent differ-
ent rice varieties
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due to skeletal stretching and atomic bending [29]. Lig-
nin, which is evident between 1500 and 1700 cm⁻¹, dis-
plays characteristic bands attributed to aromatic ring 
symmetric stretching [30]. The structural variations in 
lignin and hemicellulose across lignocellulosic materi-
als lead to alterations in aromatic ring stretching modes, 
contributing to the observed spectral differences. The 
corresponding Raman shifts do not align precisely due to 
the inherent structural diversity of lignin and hemicellu-
lose molecules within these materials [31].

Brown rice, polished rice, and rice flour primarily con-
sist of starch and protein. The Raman scattering signals 
of starch exhibit distinct regional distributions, with each 
region corresponding to specific molecular vibrations. In 
the spectral range of 400 to 800 cm⁻¹, the characteristic 
peaks primarily arise from the vibrational modes of the 
CCC and CCO glycosidic ring backbone. Within 800 to 
1200  cm⁻¹, the peaks were attributed to the stretching 
vibrations of CC, CO, and COC groups within glyco-
sidic bonds, as well as ring breathing motions. The region 
spanning 1200 to 1500  cm⁻¹ primarily exhibits peaks 
originating from the vibrations of hydrogen-bonded car-
bon-containing groups, including CH, CH₂, COH, and 
CCH [30]. At 479 cm⁻¹, the Raman spectrum displays a 
prominent peak attributed to the respiratory vibration of 
the pyran ring skeleton in glucose. In the 500 to 700 cm⁻¹ 
region, weaker peaks emerge, stemming from the bend-
ing vibrations of the CCO bond in dextran. The broader 
range of 800 to 1500  cm⁻¹ hosts multiple characteristic 
peaks, primarily reflecting vibrations of hydrocarbons, 
alcohols, esters, as well as CC and CO bonds within 
ring structures. Specifically, peaks at 867, 942, 1083, 
and 1382  cm⁻¹ are attributed to stretching, bending, 

and deformation vibrations of CH, CO, COH, and COC 
bonds in starch and sugar rings [32].

The assignment of Raman spectral bands for protein 
vibrations is a complex process that often relies on model 
compounds such as amino acids and short peptides for 
reference [32]. The constituent amino acids of proteins 
share common groups and bonds, such as CC and CH. 
The Raman vibration peaks of these bonds are primarily 
clustered within the range of 360 to 1500 cm⁻¹ [33, 35]. 
The amide I band, which appears in the range of 1600 to 
1700 cm⁻¹, primarily involves stretching of the CO bond, 
stretching of the CN bond within the peptide group, and 
in-plane bending of N-H and CαCN within the peptide 
group. Vibrations in the amide II and III regions encom-
pass N-H in-plane bending and CN stretching motions. 
These vibrations appear in the range of 1210 to 1506 cm⁻¹ 
[34].CCN skeleton deformation vibrations typically occur 
within the range of 360 to 400 cm⁻¹. NH₂ or CH₂ Rocking 
Vibrations: Rocking vibrations of NH₂ or CH₂ contribute 
to spectral peaks near 1115 and 1385 cm⁻¹. OCO Vibra-
tions: Stretching, rocking, and in-plane bending vibra-
tions of OCO result in characteristic peaks within the 
range of 430 to 620 cm⁻¹ and at 1470 cm⁻¹ [35].

LIBS data analysis
LIBS spectrum original curve
The analysis of LIBS spectral curves for different types 
of rice samples (paddy rice, brown rice, polished rice, 
and rice flour) reveals several observations (Fig.  6). All 
sample types exhibited a prominent peak within the 
700 ~ 800 nm range. This peak is likely related to the pres-
ence of certain elements that are commonly found in rice, 
such as potassium or calcium. Multiple weaker peaks 
and minor peaks are observed in the 300–600 nm region. 
These peaks may represent various elements, or the same 
element can appear at distinct peak positions due to dif-
ferent plasma conditions or interactions with other ele-
ments in the sample. The maximum peak intensity of 
paddy rice is significantly lower than that of brown rice, 
polished rice, and rice flour. This difference may be attrib-
uted to the presence of the rice husk in paddy rice, which 
can affect the laser-induced plasma and subsequently the 
spectral intensity. Spectral analysis reveals two distinct 
and prominent peak clusters within the wavelength range 
of 300 to 600 nm, and weaker peak clusters in the 800 to 
1000 nm region, similar to rice flour.

The LIBS data of brown rice exhibits two prominent 
features in the spectral, indicating the presence of spe-
cific elements or compounds that are more pronounced 
in brown rice.

The spectral profiles of polished rice demonstrate a rel-
atively high degree of overall stability, with no discernible 
deviation observed between different rice varieties. This 

Fig. 4 Average Raman spectral signatures of four sample types, includ-
ing paddy rice(green), brown rice(orange), polished rice(red) and rice 
flour(blue). The grey prominent part corresponds to the consistent char-
acteristic peak position of brown rice, polished rice and rice flour
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Fig. 5 Characteristic Raman spectral peaks assigned to four sample types. (a)paddy rice, (b)brown rice, (c)polished rice, (d)rice flour. The dotted line rep-
resents the average spectral profile across 20 varieties of each sample type, the solid lines depict individual characteristic peaks post-peak identification. 
The numbers accompanying the peaks indicate the Raman shifts. Different colors represent the characteristic peaks at different positions obtained after 
peak searching operation of the NGSLabSpe software
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suggests that the polishing process may result in a more 
smooth surface and more consistent spectral signals.

The LIBS data of rice flour exhibits a higher density 
of peak clusters within the wavelength range of 300 to 
700 nm compared to other rice sample types. This may be 
due to the increased surface area and exposure of differ-
ent compounds during the milling process.

The diversity of these spectral data may be attrib-
uted to external factors such as instrument parameters, 

fluctuations in laser energy, sample inhomogeneity, and 
matrix effects. These factors can influence the shape and 
intensity of the LIBS spectral signals.

The research highlights the complexity of LIBS spectral 
analysis and the need to consider various factors that can 
affect the spectral signals. Understanding these factors is 
crucial for accurately interpreting the spectral data and 
deriving meaningful information about the composition 
and properties of rice samples [36].

Table 1 Raman characteristic peak attribution and molecular motion information in rice
Wave number/cm− 1 Approximate assignment of vibrational mode Assignment
254 ~ 260 (COH) vibration Fibers
283 ~ 299 (CCC) ring torsion

(CCC) ring bend vibration
356 ~ 378 (CCC) ring symmetric

(CCC) ring bend vibration
406 ~ 410 (CCO) bending vibration

(CCC) bend vibration
Amylopectin

434 ~ 436 (CCC) ring vibration Fibers
438 ~ 441 (CCO) bending vibration

(CCC) bend vibration
(CO) torsion vibration

Amylopectin

476 ~ 479 Glucose skeleton vibration Starch
520 ~ 521 (COC) glycosidic stretching vibration Fibers
580 (CCO) bending vibration Glucan
594 skeletal deformation of aromatic rings, substituent groups and side chains Lignin
641 (COC) in plane symmetric stretching vibration Fibers

Amylopectin716–718 (CCO) bending vibration
724 skeletal deformation of aromatic rings, substituent groups and side chains Lignin
768 ~ 769 (CCO) bending vibration Amylopectin

Fibers820 (COC) in plane symmetric stretching vibration
852 ~ 867 (CO) ring vibration

(CH) deformation vibration
Saccharide ring
Amylopectin

941 ~ 943 (COC) symmetric stretching vibration Glycogen
Amylopectin

1001 ~ 1006 (CH2) vibration Phenylalanine (breathing mode)
Fibers

1033 ~ 1050 (CC) extensional vibration
(COH) bending vibration
(CO) extensional vibration

Fat/Amylopectin

1042 CH and CN deformation vibrations Protein
1083 ~ 1084 (COH) bending vibration Starch
1128 ~ 1132 (COH) bending deformation vibration

(CC) stretching vibration
(CO) extensional vibration

Glucose

1199 ~ 1203 (CO) extensional vibration
(CC) extensional vibration

Starch

1251 ~ 1266 CN stretching vibration of amide band III Protein
1341 ~ 1342 (CC) extensional vibration

(COH) bending vibration
Amino acid/Fatty acid

1383 ~ 1398 (CC) extensional vibration Starch
1462 ~ 1463 CH in-plane bending vibration Glucose
1519 (C = C) stretching vibration Fibers
1522 Amide I/II Protein
1599 ~ 1603 Amide I/II Protein
1605 (C = C) stretching vibration Fibers
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LIBS curve band analysis and material attribution
Utilizing the NIST atomic spectrum and molecular spec-
trum identification database ( h t t p  s : /  / p h y  s i  c s .  n i s  t . g o  v /  P 
h y  s R e  f D a t  a /  A S D / l i n e s _ f o r m . h t m l), elemental analysis 
was performed on the obtained LIBS curves of paddy 
rice, brown rice, polished rice and rice flour (Fig. 7). The 
elements with obvious peaks at the corresponding wave-
lengths are found, as shown in Table  2. The results are 
almost identical to the corresponding elements and cor-
responding wavelengths provided by other literatures, so 
the reliability of the data results can be explained [37].

Correlation analysis between spectral data and real values
A comprehensive correlation analysis was performed on 
the LIBS, Raman, and microscopic hyperspectral data 
obtained from paddy rice, brown rice, milled rice, and 
rice flour, focusing on their relationship with amylopectin 
and protein content (Fig. 8).

Correlation analysis with amylopectin
After excluding non-pertinent variables (-0.2 to 0.2), 
the absolute correlation values between the three spec-
tral variable types and amylopectin content primarily 
fell within the range of 0.2 to 0.4. A subset of these vari-
ables exhibited a stronger association, with correlations 
ranging from 0.4 to 0.8. Notably, the highest correlations 
among LIBS and Raman spectral variables were observed 
in the 0.6 to 0.8 range, while those of microscopic hyper-
spectral variables were relatively lower, within 0.4 to 0.6. 
Across the different sample types, LIBS and Raman spec-
troscopic correlations displayed both positive and nega-
tive associations. However, microscopic hyperspectral 
correlations revealed distinct trends: rice flour variables 
predominantly showed negative correlations, while pol-
ished rice variables displayed positive correlations.

Correlation analysis with protein
Similarly, excluding non-pertinent variables (-0.2 to 0.2), 
the absolute correlation values between the three spectral 

Fig. 6 LIBS Spectrum curves of 20 rice varieties. (a)paddy rice, (b)brown rice, (c)polished rice, (d)rice flour. Different colors in the figure represent different 
rice varieties

 

https://physics.nist.gov/PhysRefData/ASD/lines_form.html
https://physics.nist.gov/PhysRefData/ASD/lines_form.html
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variable types and protein content primarily ranged from 
0.2 to 0.4. A subset of these variables exhibited a stron-
ger association, with correlations within the 0.4 to 0.6 
range. Compared to amylopectin, the peak correlation 
between these spectral variables and protein content was 
marginally lower. Across the different sample types, LIBS 
and Raman spectroscopic correlations again displayed 
both positive and negative associations. The microscopic 
hyperspectral correlation analysis revealed a consistent 
positive correlation trend between grain and brown rice 
data. For rice flour and milled rice, the analysis indicated 

the presence of both positively and negatively correlated 
variables.

In summary, the correlation analyses with amylo-
pectin and protein content across LIBS, Raman, and 
microscopic hyperspectral variables revealed varying 
degrees of association. LIBS and Raman variables gener-
ally demonstrated a broader range of correlations, while 
microscopic hyperspectral correlations exhibited slight 
differences in trends between sample types. These corre-
lation variables will serve as crucial inputs for the subse-
quent regression modeling process.

Regression modeling of spectral data and quality index
The R² curves illustrate the performance of models pre-
dicting amylopectin and protein content using micro-
scopic hyperspectral, Raman, and LIBS techniques across 
various rice samples, including paddy rice, brown rice, 
polished rice, and rice flour (Fig. 9).

Results analysis of microscopic hyperspectral regression 
modeling
The microscopic hyperspectral analysis for predicting 
amylopectin and protein contents is illustrated in Fig. 9(a) 
and (b). The findings show the maximum R²curve is 

Table 2 LIBS characteristic spectral lines and corresponding 
elemental attribution
Element Spectral emission lines (nm)
C 247.86
CN 387.2, 388.4
Ca II 393.5, 397, 854.0, 865.9
Ca I 422.7, 616.2, 644.0
Mg I 285.21, 516.7, 517.1, 518.2
Na I 588.8,744.0, 746.0
Hα 656.2
K I 766.5, 769.9
Fe I 379.8, 431.3, 433.1, 657.5
O I 777.1

Fig. 7 Peak analysis of LIBS spectral for four sample types. (a)paddy rice, (b)brown rice, (c)polished rice(c), (d)rice flour. The grey prominent part corre-
sponds to the obvious peak that assigned, and the number corresponding to each peak represents the assigned band
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greatly affected by the regression methods used. The 
average R² curve provided greater stability, with amylo-
pectin modeling averaging 0.19 and protein modeling 
0.18. Modeling performance across four samples types 
did not vary significantly and with low R². Microscopic 
hyperspectral imaging captures spectral and image data 
from small regions, but rice grain compound distribution 
is often non-uniform. Thus, limited spectral information 
from these areas may inadequately characterize overall 
amylopectin and protein content.

Results analysis of raman regression modeling
The modeling outcomes using Raman spectral data for 
predicting amylopectin and protein content were pre-
sented in Fig.  9 (c) and (d). The average R² curve for 
amylopectin modeling is stable, revealing a clear hierar-
chy, the maximum average R² was 0.52. In contrast, the 
average R² curve for protein modeling fluctuates, with an 
overall lower value than that of amylopectin, with a maxi-
mum average R² of 0.47. Polished rice provided the best 
results for amylopectin modeling compared to other rice 
types. For protein modeling results, despite a noticeable 
decline at the extremes of the rice flour curve, the influ-
ence of these four sample types on the modeling results is 
basically the same as that of amylopectin.

Raman spectroscopy data exhibited promising results 
in regression modeling for predicting amylopectin and 
protein content, with performance trends across vari-
ous sample types. Among these, polished rice yielded 

the optimal modeling outcomes, likely attributed to its 
smooth surface and stable molecular configuration. Con-
versely, paddy rice’s outer husk interfered with spectral 
information, introducing signal instability due to husk 
grooves. Brown rice, despite being husk-free, still has 
an outer film slightly affecting Raman signal acquisition. 
Rice flour may undergo structural alterations and damage 
from mechanical or thermal processes that can influence 
the stability of the spectral data obtained.

Results analysis of libs regression modeling
The LIBS spectral data modeling results for amylopectin 
and protein content are shown in Fig. 9 (e) and (f ). Both 
maximum and average R2 curves exhibit limited vari-
ability. A clear hierarchical structure emerges among 
the diverse sample types. For amylopectin, with maxi-
mum and average R2 values of 0.81 and 0.62. Paddy rice 
leads in stability and effectiveness for modeling, followed 
by polished rice, brown rice, and rice flour. In terms of 
protein content modeling, with a similar maximum R2 
of 0.81 and an average R2 of 0.6. Polished rice outper-
forms the others, with paddy rice, rice flour, and brown 
rice trailing in that sequence. LIBS spectral data effec-
tively characterizes amylopectin and protein content in 
rice, capturing variations across sample types. Spectral 
data from grain and polished rice yield superior model-
ing results. Continuous laser pulse ablation in paddy rice 
penetrates the husk for better interior spectral signals. 
Minor burning occurs in brown rice, milled rice, and rice 

Fig. 8 Correlation analysis of LIBS, Raman and microscopic hyperspectral data with amylopectin and protein contents in rice varieties. (A) The results 
of correlation analysis with amylopectin. (B) The results of correlation analysis with protein. The figure employs numerical labels to distinguish sample 
types (paddy rice(I), brown rice(II), polished rice(III) and rice flour(IV)), and dashed lines to segregate the spectral imaging types (LIBS, Raman, microscopic 
hyperspectral). The data in the grid represents the proportion of variables within the current correlation interval, relative to the total number of variables 
analyzed
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flour during analysis. Rice material heterogeneity may 
contribute to spectral signal variations, but all sample 
types demonstrate some proficiency in characterizing 
amylopectin and protein content.

Feature selection and analysis in modeling
The screened common features of raman regression
Statistical analysis was performed on the indepen-
dent variables derived from Raman spectral data 

Fig. 9 Modeled R2 curves of spectral data for four rice sample types with amylopectin and protein content. The colors represent sample types, paddy 
rice (blue), brown rice (red), polished rice (brown), rice flour (gray). (a)&(b) show R2 results for microscopic hyperspectral data, modeling amylopectin and 
protein, respectively. (c)&(d) present R2 results for Raman spectral data, for amylopectin and protein modeling. (e)&(f) are LIBS data regression models for 
amylopectin and protein. The solid line represents the maximum R2 curve, the dotted line indicating the average R2 from multiple modeling iterations
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encompassing four distinct sample types, aiming to pin-
point common characteristic variables that consistently 
emerged across various regression techniques. These 
identified variables were subsequently correlated with 
Raman spectral peaks specific to amylopectin and pro-
tein, as depicted in Figs. 10 and 11.

Irrespective of the focus being on amylopectin or pro-
tein, a portion of the screened common independent 
variables could be aligned with Raman characteristic 
variables corresponding to the respective substances, 
albeit in relatively modest proportions. It is noteworthy 
that a significant number of these screened variables 
fell within the spectral range of 1700 to 2500  cm⁻¹, a 
region devoid of prominent peaks in the sample spec-
tra and characterized by low intensity values. The mod-
eling of polished rice spectral data revealed a higher 

concentration of characteristic variables, which corre-
lates well with the R2 curve observed in Fig. 9.

The modeling and screening process successfully 
uncovered Raman characteristic variables associated with 
both amylopectin and protein. Although the proportion 
of these matched variables may not be substantial, their 
frequent appearance in modeling iterations and consis-
tent alignment with R2 curve trends across various model 
types underscore the feasibility of our research approach. 
The inherent fluorescence properties of the tested sam-
ples and various experimental uncertainties may result in 
the selected eigenvalues not always perfectly correlating 
with distinct characteristic peaks. This phenomenon is in 
line with the findings of Zhang et al. [38] who reported 
that the optimal spectral features used by SVM for dairy 
classification did not strictly align with the prominent 

Fig. 10 The characteristic variables screened of Raman spectroscopic regression modeling of amylopectin content with various rice samples. (a)paddy 
rice, (b)brown rice, (c)polished rice, (d)rice flour. The blue represents variables exhibiting deviations in Raman characteristic shifts from the established 
profile of rice amylopectin. The red signifies variables that align closely with the known Raman characteristic shifts of rice amylopectin. The intensity of 
color correlates with the frequency of variable
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peaks in the original Raman spectra of dairy products. 
This is consistent with the results obtained in this study.

The screened common features of LIBS regression
A statistical analysis was conducted on the results of 
regression modeling between LIBS spectral data and the 
amylopectin and protein content of rice, identifying the 
common characteristic independent variables across dif-
ferent regression methodologies. The selected variables 
underwent elemental analysis, with the NIST atomic and 
molecular spectrum identification databases serving as 
references.

To address discrepancies between ideal and actual 
conditions, a tolerance of ± 0.1 (the lowest spectral reso-
lution) was allowed during the variable backtracking pro-
cess. Given that amylopectin primarily consists of C, H, 
and O, the analysis of its associated variables focused on 
these elements (Fig. 12). Conversely, proteins encompass 

a diverse array of elements due to their amino acid com-
position, with a particular focus on C, H, O, N, P, S, K, 
and Mg during variable analysis for proteins (Fig. 13). The 
detailed analysis results indicated that the majority of 
selected variables, both for amylopectin and protein, cor-
respond to the elements of interest. This highlights the 
rationality of the information utilized in regression mod-
eling when leveraging LIBS data alongside rice quality 
indicators. Furthermore, compared to Raman spectros-
copy data, LIBS spectral variables exhibit richer informa-
tion content and demonstrate better regression outcomes 
with respect to rice quality indicators.

Conclusions
This study focused on assessing the applicability of three 
spectral methodologies for non-destructive rice qual-
ity evaluation, considering the impact of various rice 
samples on inspection results. Direct modeling and 

Fig. 11 Variables screened of Raman spectroscopic regression model for protein content across rice samples. (a)paddy rice, (b)brown rice, (c)polished 
rice, (d)rice flour. The blue represents variables exhibiting deviations in Raman characteristic shifts from the established profile of rice amylopectin. The red 
signifies variables that align closely with the known Raman characteristic shifts of rice amylopectin. The intensity of color correlates with the frequency 
of variable
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analysis of LIBS data from paddy rice achieved a higher 
R2, enhancing detection efficiency compared to general 
spectral-metabolite research.The same is true for brown 
rice, polished rice and rice flour data modeling results. 
LIBS facilitates rapid content analysis across scenarios 
but consumes slight samples due to high-energy laser 
ablation.

Raman spectroscopy, using adjustable low-power 
lasers, showed potential in rice quality detection, par-
ticularly for smooth-surfaced and molecularly stable 
samples due to its sensitivity to weak scattering. It pre-
serves sample integrity and offers stable, reliable spectral 
signals, ensuring accurate results. Raman spectroscopy 
exhibits compromised detection efficacy for brown rice 
and whole grains due to surface heterogeneity and exter-
nal material coverage. Furthermore, molecular structural 
alterations induced by mechanical processing of rice flour 
samples adversely impact spectral modeling accuracy. 
Consequently, while maintaining non-destructive nature, 

Raman spectroscopic analysis necessitates stringent 
experimental conditions and sample standardization.

Conversely, microscopic hyperspectral imaging faced 
limitations in detecting rice contents due to sample size 
constraints, hindering comprehensive information cap-
ture and limiting its application. In conclusion, this study 
employed various spectral techniques to assess their 
applicability in non-destructive rice quality evaluation, 
aiming to provide valuable insights for crop grain quality 
detection.

Fig. 12 Variables screened of LIBS spectroscopic regression model for amylopectin content across rice samples. (a)paddy rice, (b)brown rice, (c)polished 
rice, (d)rice flour. The blue indicates that there are no matching element(C/H/O) for the variables. The red represents the element(C/H/O) that can be 
matched within a certain range (± 0.1). The intensity of color correlates with the frequency of variable
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