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Abstract 

Monitoring plant growth is crucial for effective crop management, and using color and depth (RGBD) cameras 
to model lettuce has emerged as one of the most convenient and non-invasive methods. In recent years, deep learn-
ing techniques, particularly neural networks, have become popular for estimating lettuce fresh weight. However, 
these models are typically specific to particular datasets, lack domain adaptation, and are often limited by the avail-
ability of open-access datasets. In this study, we propose a method based on plant geometric features for estimat-
ing the rosette structure and volume of lettuce. This new approach was compared to existing methods that recon-
struct surfaces from point clouds, such as Ball Pivoting and Alpha Shapes. The proposed method creates a tight hull 
around the plant’s point cloud, preserving high detail of the rosette structure while filling in surface holes in areas 
not visible to 3D cameras. Using a linear regression model, we estimated fresh weight for this dataset, achieving a root 
mean square error (RMSE) of 18.2 g when using only the estimated plant volume, and 17.3 g when both volume 
and geometric features were included. Additionally, we introduced new geometric features that characterize leaf 
density, which could be useful for breeding applications. A dataset of 402 point clouds of lettuce plants, captured 
before harvest, was compiled using one top-down and three side-view 3D cameras.
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Background
Monitoring plant health and modeling their structure 
during growth are essential for plant research, breeding, 
and optimizing production [1, 2]. Computer vision and 
deep learning algorithms are increasingly used to opti-
mize plant spacing during growth, determine the ideal 
harvest time [3], and efficiently manage resources like 
water and electricity to meet crop demands [4, 5].

Several non-destructive methods for plant monitoring 
and modeling are currently in use. Photogrammetry, for 

example, reconstructs 3D point clouds from processed 
RGB images. While regular RGB cameras can be used, 
this method typically requires a large number of images 
and significant processing time. For instance, Kochi et al. 
[6] used up to 72 images and 3 h of processing time to 
create detailed plant models in a greenhouse, while Salter 
et al. [7] used 120 images with a processing time of 5–10 
min. Andújar et al. [8] modeled weeds in field conditions 
using 40–50 images per plant.

In contrast, 3D cameras offer the advantage of fast data 
capture, providing both RGB and depth (RGBD) frames 
and point clouds of plants in real time. For commercial 
applications, 3D cameras are typically installed above 
plants, providing only a top-down view. Zhang et  al. 
[9] employed a point cloud processing technique and 
developed the PointCNN method for predicting fresh 
weight (FW), while Lou et al. [10] used geometric meth-
ods to complete incomplete lettuce point clouds for FW 
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estimation. Mortensen et  al. [11] also used image and 
point cloud processing to estimate FW in field-grown 
plants.

To calculate geometric features, such as volume, from 
plant 3D models, the plant’s surface is typically recon-
structed. Various methods for surface reconstruction 
from 3D point clouds have been reviewed by Fei et  al. 
[12] and Sulzer et al. [13]. Sulzer et al. [13] tested widely 
used methods (such as Ball Pivoting and Poisson Sur-
face Reconstruction) alongside newly developed neural 
network (NN) techniques, using a benchmark of data-
sets e.g., Wu et  al. [14]. Notably, none of these studies 
addressed fractal-shaped objects, such as lettuce plants, 
either in their training or validation datasets.

Common lettuce traits estimated for monitoring and 
breeding purposes include fresh weight, dry weight, plant 
height, diameter, and leaf area [9]. However, these traits 
do not provide information about the rosette structure, 
such as leaf density and distribution. These geometric 
features are not only valuable for breeding but also cru-
cial for more accurate FW estimation, as leaf distribution 
can vary significantly between plants.

A more “black-box” approach to predicting plant FW 
and other parameters relies on RGBD images and uses 
convolutional neural networks (CNNs). To advance 
FW prediction methods, the Autonomous Greenhouse 
Challenge [15] created a dataset of plant RGBD images 
that has been used in several studies. Zhang et  al. [16] 
applied a custom CNN to several plant types, while Gang 
et  al. [17] used a two-stage CNN architecture based on 
ResNet50V2 for RGBD images. Zhang et al. [18] imple-
mented a three-stage CNN, and Lin et al. [19] combined 
CNNs with plant geometric features. Buxbaum et al. [20] 
employed a ResNet50-based NN in commercial green-
house conditions. Additionally, FW was estimated with-
out depth data by Reyes-Yanes et al. [21], who used two 
RGB images and Mask-RCNN, and by Tan et  al. [22], 
who developed PosNet for early growth stages.

Reported results suggest that CNN-based algorithms 
using RGBD images provide the most accurate FW pre-
dictions. However, their performance is highly dependent 
on the training data, which is often limited to only a few 
hundred samples—too few to build models that are gen-
eralizable across different datasets [23]. To our knowl-
edge, only a few studies [9] have conducted applicability 
analyses, using images from independent trials to vali-
date these models externally, or attempted domain adap-
tation, as seen in other agricultural tasks Magistri et  al. 
[24]. Moreover, the only found freely available dataset is 
the one provided by the Autonomous Greenhouse Chal-
lenge [15].

The challenges of plant modeling in computer vision 
are exacerbated by environmental variables and plant 

characteristics [3]. Due to the lack of available data and 
the difficulty in adapting pre-existing neural networks to 
new domains, this study focuses on volume estimation 
based on plant 3D model reconstruction using physi-
cally explainable features. We propose a novel method 
for detailed surface reconstruction of the lettuce rosette 
using an interpolation technique. Our study focuses on 
lettuce (Lactuca sativa L.), a commercially important 
leafy vegetable grown in controlled environments such as 
greenhouses and vertical farms [25]. We designed a sim-
ple measuring setup constructed from off the shelf com-
ponents, and created a dataset point clouds of plant at 
the harvesting stage.

Methods
Plant material and growing conditions
Three consecutive experiments were carried out in a 
greenhouse and vertical farming research unit at the 
Natural Resources Institute Finland (Luke), Horticul-
ture Research Station in Piikkiö, Finland. Lettuce variety 
‘Katusa’ was sown in pots, with one seed per pot, using 
Kekkilä VHM 620 AirBoost lettuce peat (Kekkilä-BVB, 
Vantaa, Finland). A total of 132 pots were used in each 
experimental round. After a two-week seedling period, 
the lettuce plants were transferred to a controlled-envi-
ronment experimental unit. The plants were grown using 
a nutrient film technique (NFT) system under LED lights 
(Valoya BX120 Solray, Valoya Oy, Helsinki, Finland).

Measuring system
Three-dimensional imaging of lettuce was performed 
using a frame that held four 3D cameras (D405, Intel 
RealSense, California, USA) with the depth accuracy 
of ± 2% at 50 cm, positioned on three sides and above the 
plant, as shown in Fig. 1. The depth field of view of the 
cameras was 87° × 58°, and the distance to the plants was 
such that the entire large mature plant would enter the 
field of view. With the considered setup and plants, the 
distance between the cameras and the plant rosette geo-
metric center was about 25 cm. Lighting was provided 
by three 10W LED lights placed above the side cameras, 
with the light directed through white paper sheets for dif-
fusion. To maintain consistent lighting conditions, the 
imaging chamber was enclosed with light-isolating cur-
tains. To facilitate background filtering, the curtains and 
the chamber floor were designed with distinguishable 
colors. The point clouds captured by the four cameras 
were combined into a single point cloud using coordinate 
transformation, which was made possible by calibrating 
the camera positions before each imaging session.

RGBD images of the plants were captured using soft-
ware provided by the camera manufacturer (Viewer, Intel 
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RealSense, Santa Clara, California, USA) in  .bag format. 
RGB color point cloud frames were extracted from the 
.bag files using the rs-convert tool (Intel RealSense SDK).

For accurate merging of point clouds achieved from dif-
ferent cameras, a calibration was performed before each 
recording session. During the calibration, an object with 
easily detectable features (Fig. 1c) was recorded by all the 
cameras. To maximize the visibility of the object and to 
fit between the point on different sides of the object seen 
by different cameras, the object was chosen to be a flat 
sheet—a paper sheet with format A6, with drawn marks 
to ease their detection by cameras and manual process-
ing. To improve the accuracy by collecting more data, 
the calibration sheet was recorded 3–5 times in different 
locations and orientations. In each recorded point cloud, 
the points related to the calibration sheet were manually 
extracted from the rest of the points. Using all achieved 
point clouds, the space transformation parameters defin-
ing translation and rotation of the point clouds for each 
camera were calculated and stored. To calculate them, an 
optimization problem was solved. The cost function was 
the sum of differences between points in different point 
clouds. The optimization parameters were three transla-
tion and three rotation parameters in a space transfor-
mation matrix for each camera. The coordinate system 
of the top camera numbered 4 was taken as the  refer-
ence, while the transformation matrices for the remain-
ing cameras were calculated, resulting in 18 optimization 
parameters. Because of a large number of parameters 
and unstructured dataset including coordinated of par-
tial point clouds resulting in multiple local minima, the 
genetic algorithm (GA) was used. A basic version of GA 
[26] was implemented with the number of generations 
100, number of population 100 and mutation rate 0.1. 
The accurate definition of the cost function and imple-
mentation of the calibration algorithm are described in 
the Supplementary Information.

The accuracy of the calibration was estimated by label-
ling a reference point in the point clouds and measuring 
the distance between representations of this point in dif-
ferent point clouds. The reference point was chosen in 
an easily distinguishable location seen from all cameras 
for all positions of the calibrations sheet—the connec-
tion point between the sheet and its holder. Since the 
calibration sheet was located in different location and 
orientations in each calibration session, a number of the 
reference points in the measured volume inside the frame 
were available for accuracy estimation.

At the end of the experiment (23 days in NFT for 
experiment 1, and 21 days in NFT for experiments 2 
and 3) after point cloud recording, the aerial parts of the 
plants were harvested, and their fresh weight (FW) was 
measured using a scale (DeltaRange PR5002, Mettler 
Toledo, Greifensee, Switzerland) on March 9, 2023, April 
4, 2023 and May 8, 2023.

The RGBD and point cloud frames recorded during this 
study were organized into a dataset named Pii (https://​
zenodo.​org/​depos​it/​84102​52), which includes 402 3D 
point clouds with reference FW values ranging from 62.3 
to 276.5 g (Fig. 2). Additional 3D images of these plants 
recorded throughout their growth were made as an 
attempt to measure plant biomass during growth. How-
ever, due to various uncertainties, the biomass measure-
ments were not sufficiently accurate, hence, the images 
are available in the dataset, though they do not have FW 
reference values and were not considered in this study.

Plant surface reconstruction
Lettuce leaves have a complex structure, making 3D 
modeling with LIDAR or stereo 3D cameras challeng-
ing. In their mature stage, lettuce leaves are typically 
fractal-shaped, creating multiple hidden areas that are 
only visible to one RGB camera of a stereo setup. Addi-
tionally, the sharp angles of surfaces relative to LIDAR 
cameras prevent proper reflection of the projected 

Fig. 1  Structure of the plant 3D recording system. A frame with four 3D cameras installed on the sides and on the top of a lettuce plant 
and the lights: general view of the recording setup (a), side view from the camera 1 (b), calibration sheet (c)

https://zenodo.org/deposit/8410252
https://zenodo.org/deposit/8410252
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Fig. 2  Examples of lettuce plants recorded in the experiment (a). The plant No. 40 (taken on 9 March 2023) with reference FW = 237.84g (b) 
and plant No. 72 (taken on 9 March 2023) with reference FW = 235.88g (c) have noticeably different sizes and leaf density because of high variability 
in the plant structure

Fig. 3  Example of a plant top (a) and side (c) views and their 3D point clouds recorded with the 3D cameras at top (b) and side (d) views. The point 
cloud surfaces reconstructed by Alpha shapes algorithm with the alpha parameters 0.2 (e) with a sectional view (f) and Ball Pivoting algorithm 
with the ball radius 5 cm (g) with a sectional view (h), and with the Vacuum package algorithm (i) with a sectional view (j)
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light. The intricate interconnections between lettuce 
leaves also create narrow, deep spaces that are difficult 
for 3D cameras to capture. These factors lead to a lack 
of data and the formation of holes in the reconstructed 
surfaces (Fig. 3b, d). Moreover, the visual volume of the 
plant is strongly influenced by the rosette structure, 
meaning that plant density can vary widely, as shown 
in Fig. 2b and c. These challenges make accurate surface 
reconstruction particularly difficult. As a result, in this 
study, plant volume was defined as the volume enclosed 
by a tight hull around the plant model.

Two commonly used methods for surface recon-
struction were tested: the Ball Pivoting algorithm [9, 
27] and Alpha Shapes [28]. However, these algorithms 
failed to meet two conflicting requirements: accurately 
approximating the fractal-shaped lettuce surface with 
high detail while correctly closing the holes caused by 
missing data points. The algorithms either used small 
structural elements, which left holes in the surface (and 
sometimes created false structures inside the surface by 
connecting the holes), or they used larger elements to 
close the holes, resulting in rough surfaces with insuf-
ficient detail. To address this, the parameters of the 
tested algorithms were adjusted in this study to ensure 
that the surfaces were reconstructed without holes 
while maintaining the maximum level of detail. The 

following parameters were used: a 5 cm ball radius for 
the Ball Pivoting algorithm and an alpha parameter of 
0.2 for Alpha Shapes (Fig. 3).

To address the issue of missing data, a specialized 
algorithm was developed for reconstructing the lettuce 
rosette surface, taking into account the unique geom-
etry of the lettuce rosette. The algorithm was based on 
the assumption that most holes in the point cloud occur 
in the depressions between leaves or in areas hidden 
beneath the leaf surfaces. The proposed method uses a 
physical analogy: shrinking an elastic vacuum package 
around a solid body under external pressure during vac-
uum sealing.

This vacuuming process for a 2D slice of the lettuce 
point cloud is illustrated in Fig. 4b. The elastic package 
represents the reconstructed body surface and is mod-
eled by a set of package points (blue dots in Fig. 4b). Ini-
tially, the package points are positioned on the convex 
hull of the object. As the vacuuming process begins, the 
package shrinks until its points make contact with the 
body surface points (bold blue dots in Fig. 4b touching 
the green point cloud). However, in areas with missing 
data (large gaps, greater than 0.5 cm in size, as shown in 
Fig. 4b), the package continues to move inward through 
the holes under external pressure. The direction of this 
inward movement is perpendicular to the boundary 

a                     b                     c                                      d 

e                                      f                                     g 
Fig. 4  The proposed vacuum package method for surface reconstruction for a whole plant model (a, b, c, d) built from four views and a partial 
model (e, f, g) built from a top view: partition of a 3D point cloud to sectors (a, e), reconstructing the 2D surface curve (b), final tight hull of a sector 
(c, f) and the final point mesh of the reconstructed surface (d, g)
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points of the holes (indicated by the red arrow for a 
specific interval). The shrinking stops when the pres-
sure balances with the elasticity of the package, which 
is represented by a condition where the maximum dis-
tance between the package points reaches a predefined 
threshold (bold blue dots in Fig.  4b, further from the 
green point cloud).

This algorithm creates a detailed surface similar to the 
Ball Pivoting algorithm, with the density of the package 
points matching the pivoting ball radius, while filling in 
all surface holes, regardless of their size (Fig. 4c). It also 
reconstructs the depressions between the leaves.

However, the full 3D plant model, which is built from 
three side views and one top view, is available only for 
part of the dataset. The remaining part of the data-
set consists solely of top-view RGBD images. In cases 
with partial models, the information about the plant’s 
side structure may be obscured by the leaves, making 
it unavailable (Fig. 4e). In such cases, the vacuum pack-
age method is used to augment the plant structure, as 
shown in Fig. 4f.

The code for the vacuum package method, along with 
the data processing scripts used in this study, are avail-
able in the Supplementary Information.

To keep the surface reconstruction algorithm sim-
ple, only the two-dimensional version of the vacuum 
package method was implemented in this study, while 
the development of a full 3D algorithm was beyond 
the scope of this work. To apply the algorithm, the 
plant point cloud was divided into 24 equal angle sec-
tors by planes passing through a central axis as shown 
in Fig. 4a and c. The central axis was the Z axis in the 
coordinate systems defined as show in Fig. 6a and b: the 
XY was the plant base surface, X axis was defined as the 
X axis of the camera 4, the origin was located on the 
XY plane in the geometric center of the point cloud. To 
turn the points inside the sectors into a planar object, 

the points were projected on one of the plains defining 
the sector. A tight hull with 200 points was generated 
for each sector.

The final surface points for each sector were then tri-
angulated to create a surface mesh. The plant volume 
defined by the hull was calculated by summing the vol-
umes of the individual sectors. The sector volume was 
approximated using trapezoidal rule for integration

where V is the total plant volume estimation, Vk is a vol-
ume estimation for the sector k, yi+1, yi, xi+1 and xi are the 
y and x coordinates of the points i + 1 and i of the sector 
hull, dSi is the area of the i part of the sector k.

In this study, two parameters of the method, the num-
ber of the sectors, and the number of the hull points 
were found empirically for this specific dataset. The tight 
hull with 200 points for each sector resulted in a maxi-
mum distance of about 5 mm between the hull points. 
The number of sectors was taken such that each sector 
was assumed to be thin enough to be treated as a pla-
nar object (Fig. 4b). For other datasets, they must be fit-
ted according to the point and hole density in the point 
clouds.

Plant structure characterization
The shape of the plant rosette can vary significantly 
between individual plants (Fig. 2b and c), which strongly 
impacts the ability to estimate the plant’s volume. A hull 
covering a plant with loosely arranged leaves (similar to 
a rose) will enclose more volume than a plant with the 
same mass but tighter leaves (like a cabbage). However, 
the close hull generated by the Vacuum algorithm allows 
for the characterization of leaf density near the rosette 
surface.
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Fig. 5  Transformation of the reconstructed plant section hull (a, blue dots) to a continuous plant surface profile. The hull is transformed to the polar 
coordinates, only the plant upper part is taken (b, red dots) and the points are shifted by their average value (c)
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To quantify the leaf distribution, the rosette pro-
files for all sections were used (an example is shown in 
Fig. 5a). To account for the deepening between leaves, 
the Cartesian coordinates (Fig. 5a) were converted into 
polar coordinates (r, α), where r represents the dis-
tance of the package points from the center of the geo-
metric lettuce point cloud (point (0,0) in Fig.  5a), and 

α represents the azimuth angle (Fig.  5b). Only points 
within the range 0.1 < α < π – 0.1 and r > 0.2 cm were 
considered.

To eliminate the influence of leaf height, the profile was 
shifted by its average value. The resulting profiles for all 
sections were then concatenated into a continuous sur-
face profile that represents the entire plant.

a b

dc

Fig. 6  Comparison of the views and features of two plants No. 40 (a, c, e) and No. 72 (b, d, f) from Fig. 2b and c with similar FW and significantly 
different estimated volume: the side view of the recorded point clouds (a, b), an example of the plant surface profile of one section (c, d), the plant 
surface profile for all plant sections represented by different colors (e, f)
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Several geometric features were calculated for the plant 
surface profile. The profile exhibits an oscillating wave 
pattern, where the wave crests correspond to the tips of 
the leaves, and the troughs correspond to the depressions 
between the leaves. The average wave amplitude (Amp), 
calculated as the difference between the crests and 
troughs, was used to characterize the average leaf length. 
Additionally, the plant height (Height) was calculated as 
the 95 percentile of the point cloud height for the entire 
plant.

Fresh weight prediction by regression
The plant point cloud only represents the outer surface 
of the plant without capturing the complex inner rosette 
structure. Additionally, as mentioned earlier, the 3D 
models of the plant contain multiple holes. These two 
factors prevent direct calculation of the plant volume 
using the currently available sensors. Consequently, the 
plant FW cannot be accurately calculated by assuming a 
constant leaf density.

The volume enclosed by the reconstructed surface can 
serve as an estimator for FW. While the relation between 
the FW and the leave length, density and plant height 
can be assumed, the influence of their estimators Amp 
and Height can be used to refine the estimated volume 
by accounting for the leaf structure. However, this influ-
ence is not clear and was tested in this study in simple 
and multiple linear regression models predicting FW.

Model accuracy
Root mean square error (RMSE) and normalized RMSE 
(NRMSE) were used to estimate the accuracy of the mod-
els, where yi was the reference FW and ŷi was the pre-
dicted FW value.

To perform validation for the regression models, a ten-
fold validation was applied with averaging the RMSE and 
NRMSE.

Results
The features of the plants No. 40 and No. 72 (Fig. 2b and 
c) are presented and compared in Fig. 6a and b.

The reference FW of these plants are close, 237.84 g 
and 235.88 g for Plant No. 40 and 72, hence, we assumed 
that actual plant canopy volumes are close because of 
uniform density of the lettuce leaves. However, the dif-
ference in rosette dimensions is clearly evident from the 
plant point clouds, and the estimated V and Amp were 
significantly different: V was 3.155 l and 4.33 l, and Amp 
was 2.4 cm and 2.9 cm for Plant No. 40 and 72 respec-
tively. The Height was close: 2.4 cm and 2.9 cm.

The correlation between the calculated plant volume 
and the reference plant FW, based on simple regression, 
is shown in Fig. 7 and Table 1. The correlation is analyzed 
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Fig. 7  Correlation between the reference plant FW and estimated plant volume for the Ball pivoting, Alpha shapes and proposed Vacuum 
packaging surface reconstruction methods for the 3D models achieved from the top view images (a) and the top and three side view images (b)
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with respect to the number of 3D images used and differ-
ent surface reconstruction methods.

The accuracy of FW estimation was similar across 
different surface reconstruction algorithms, with root 
mean square errors (RMSE) ranging from 18.9 to 23.5 
g. However, the ratio between the predicted FW and 
the calculated volume (i.e., the slope of the regression 
line) differed significantly between surface reconstruc-
tion methods, indicating variations in the level of detail 
in the surface reconstructions.

FW prediction with three side 3D images in addition 
to the top 3D image had higher accuracy for the Vac-
uum package and Alpha shape algorithms.

The correlation between the measured FW and the 
plant features extracted from the plant surface pro-
file is shown in Fig.  8 for simple linear regression and 
in Table 2 for multiple linear regression. In the simple 
regression, V exhibits the strongest correlation with 
FW. In the multiple regression models, all equations 
that achieve the highest accuracy include V.

Although the inclusion of additional features in the 
prediction equations can improve prediction accuracy, a 
clear influence of these features was not observed for the 
dataset used in this study.

The correlation between the geometric features is pre-
sented in Fig. 9. The V and Height show a strong correla-
tion, while the Amp is not correlated with V.

The calibration accuracy was 2.6 mm on the March 9, 
2023 recording session and 6.2 mm on the April 4, 2023 
session.

Discussion
Using the proposed vacuum package method with only 
top-view 3D images, FW was estimated with an RMSE 
of 18.9 g and an NRMSE of 10.8% for the dataset col-
lected in this study, where FW ranged from 62.3 to 
276.5 g. These errors are comparable to or lower than 
RMSE values of 25.3 g [19], 27.85 g [17], or an NRMSE 
of 15.63% [18], and RRMSE values of 0.193 [9], all 
achieved for the Autonomous Greenhouse Challenge 
[15] dataset, which also consisted of only top-view 3D 
images and had an FW range between 1.4 and 459.7 g. 
When applied to the Autonomous Greenhouse Chal-
lenge dataset, the proposed method achieved an RMSE 

Table 1  Accuracy of FW prediction (RMSE, NRMSE, R2) and 
simple linear regression models (FW(V), where V is the calculated 
volume in liters) for different surface reconstruction methods

The minimum errors are highlighted in bold

Vacuum Alpha shape Ball pivoting

Top and three side view images

RMSE, g 18.2 21.7 30.2

NRMSE, % 10.1 12.0 16.7

FW(V) 51.8V + 27.2 34.5V + 30.6 27.2V + 70

R2 0.85 0.78 0.58

Top view 3D image

RMSE, g 18.9 23.5 21.4

NRMSE, % 10.9 13.5 12.3

FW(V) 66.9V + 20.7 35.1V + 30.1 36.2V + 33

R2 0.79 0.68 0.73

Fig. 8  Correlations between the measured FW and geometric features for the top and three side view 3D images (upper row) and top view 3D 
image (lower row)
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of 49.6 g and an NRMSE of 24.1% for a simple regres-
sion model and 46.2 g and 22.4% for a multiple regres-
sion model with all three considered parameters. This 
high error could be explained by different qualities of 
the datasets which results from different types of the 3D 
cameras used for their creating: the short range stereo 
visual camera (D405, Intel RealSense, California, USA) 

used in this study created point clouds with missing 
data in the depressions between the leaves, while the 
middle range stereo IR camera (D415, Intel RealSense, 
California, USA) used for the Autonomous Greenhouse 
Challenge dataset created continuous point clouds with 
smoothened depressions between the leaves.

The surface reconstruction using the proposed vac-
uum packaging method was specifically developed for 
surfaces with multiple curved interconnected folds and 
deep depressions, such as those seen in lettuce rosettes. 
According to Table 1, this method improves FW predic-
tion compared to other tested methods, even when the 
lower part of the rosette is hidden. Regression mod-
els based on the vacuum method (Table 1) had a higher 
slope coefficient, meaning that V was less overestimated 
by the vacuum method than by the other methods. The 
y-intercept coefficient was closer to zero in the vacuum 
method models, reflecting a more accurate relationship 
between V and FW.

Geometric features extracted from the plant surface 
profile can be used to characterize leaf density and struc-
ture. These features provide insights into the average 
number of leaves in rosette cross-sections and the size of 
the depressions between leaf tips. While these features 
are implicitly incorporated in CNNs used for lettuce 
monitoring, their value is difficult to extract and lacks a 
physical explanation for direct application.

According to Table  2, the most significant feature in 
predicting FW is V. The Amp feature, which character-
izes the size of the depressions between leaves, improves 

Table 2  FW prediction multiple linear regression models with 
different parameter number (PN) for top only and top and three 
side view 3D images

PN R2 RMSE, g NRMSE, % FW

Top and three side view 3D images

1 0.85 18.2 10.1% 27.2 + 51.8·V

0.74 23.8 13.2% − 149.6 + 30.7·Height

0.08 44.6 24.7% 74.5 + 43.0·Amp

2 0.86 17.6 9.7% 57.8 + 54.3·V-16.2·Amp

0.85 17.9 9.9% − 6.9 + 44.3·V + 5.2·Height

0.74 23.7 13.1% − 142.1 + 31.2·Height-5.4·Amp

3 0.86 17.3 9.6% 23.7 + 46.8·V + 5.2·Height-16.2·Amp

Top view 3D images

1 0.79 18.8 10.9% 20.7 + 66.9·V

0.62 25.3 14.6% − 125.2 + 28.1·Height

0.04 40.4 23.2% 91.1 + 31.5·Amp

2 0.8 18.2 10.5% 58.3 + 70.2·V-18.2·Amp

0.8 18.5 10.7% − 14.5 + 57.4·V + 5.4·Height

0.63 25.0 14.4% − 157.0 + 27.6·Height + 15.1·Amp

3 0.81 18.1 10.4% 30.5 + 63.7·V + 3.4·Height-15.6·Amp

Fig. 9  Correlation between the geometric features extracted from the plant surface profile for top and three side view 3D images (upper row) 
and top view 3D images (lower row)
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FW prediction by accounting for voids within the total 
volume estimation. This physical interpretation corre-
sponds to the negative correlation of Amp in FW predic-
tion models that include V. The Height feature is strongly 
correlated with V, meaning its inclusion in the FW pre-
diction model does not significantly improve accuracy. 
However, Height can be useful for characterizing plant 
structure, such as distinguishing between tall and short 
plants with similar estimated volumes. Combinations of 
the features in the regression models were tested, how-
ever, no significant improvements were received, while 
the complexity of the equations increased and explain-
ability of the models worthened.

The errors of the 3D cameras and the calibration look 
small relatively to a typical size of the lettuce canopy. Its 
influence on the FW prediction accuracy should be ana-
lyzed in the further study. The calibration sheet used in 
this study was seen by the camera in majority of cases, 
but to improve the calibration process, a devise with 
easily and strictly distinguishable objects seen by all the 
cameras should be constructed. According to the experi-
ence from this study, the distinguishable objects should 
be flat to avoid uncertainty when it is modeled by cam-
eras seeing different sides of the object, and as small as 
possible to decrease the uncertainty when only a part of 
the object is modelled.

The volume calculation method has a clear physical 
basis. However, because the internal structure of the let-
tuce rosette composed of leaves and the voids between 
them cannot be captured with the current 3D camera 
technology, the true volume must be estimated using 
models. In this study, linear regression models were 
applied. Since only one dataset with a limited range of 
plant weights and growth stages was used, the regres-
sion models may not be generalizable to other datasets 
collected in different environments or for different let-
tuce varieties. More diverse datasets with accurate point 
clouds are required to develop more universal methods 
for FW estimation during plant growth. Additionally, the 
parameters of the method, such as the resolution of sur-
face points and the maximum distance between points, 
should be adjusted according to the specific geometric 
characteristics of the plant and the resolution of the 3D 
camera.

Conclusions
In this study, a new method for reconstructing lettuce 
surfaces for fresh weight estimation was proposed. This 
method, with a direct physical basis, offers an alternative 
to neural network-based approaches, which still suffer 
from limited datasets. New features characterizing let-
tuce leaf density and structure were proposed for breed-
ing and fresh weight estimation. A setup for 3D recording 

of lettuce and a corresponding dataset of lettuce 3D point 
clouds were introduced. For future research, additional 
and more varied data need to be collected to further 
refine and validate the proposed methods.

Supplementary information
The code used at this study is available at https://​
github.​com/​VicB18/​Lettu​ceFW (accessed on 1 Novem-
ber 2024).
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