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Abstract 

Accurate and efficient assessment of highland barley (Hordeum vulgare L.) density is crucial for optimizing culti-
vation and management practices. However, challenges such as overlapping spikes in unmanned aerial vehicle 
(UAV) images and the computational requirements for high-resolution image analysis hinder real-time detection 
capabilities. To address these issues, this study proposes an improved lightweight YOLOv5 model for highland 
barley spike detection. We chose depthwise separable convolution (DSConv) and ghost convolution (GhostConv) 
for the backbone and neck networks, respectively, to reduce the parameter and computational complexity. In addi-
tion, the integration of convolutional block attention module (CBAM) enhances the model’s ability to focus on target 
object in complex backgrounds. The results show that the improved YOLOv5 model has a significant improvement 
in detection performance. Precision and recall increased by 3.1% to 92.2% and 86.2%, respectively, with an F1 score 
of 0.892. The AP0.5 reaches 92.7% and 93.5% for highland barley in the growth and maturation stages, respectively, 
and the overall mAP0.5 improved to 93.1%. Compared to the baseline YOLOv5n model, the number of parameters 
and floating-point operations (FLOPs) were reduced by 70.6% and 75.6%, respectively, enabling lightweight deploy-
ment without compromising accuracy. In addition,the proposed model outperformed mainstream object detec-
tion algorithms such as Faster R-CNN, Mask R-CNN, RetinaNet, YOLOv7, and YOLOv8, in terms of detection accuracy 
and computational efficiency. Although this study also suffers from limitations such as insufficient generalization 
under varying lighting conditions and reliance on rectangular annotations, it provides valuable support and reference 
for the development of real-time highland barley spike detection systems, which can help to improve agricultural 
management.
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Introduction
Highland barley (Hordeum vulgare L.), as a crucial cereal 
crop, is widely cultivated in high-altitude regions world-
wide due to its resistance to cold temperatures, broad 

adaptability, high yield potential, and short growth 
cycles [1]. China is a major producer, with approximately 
270,000 hectares dedicated to highland barley cultiva-
tion, mainly in the Xizang Autonomous Region [2]. In 
the Qinghai-Xizang Plateau, highland barley is the sta-
ple crop, accounting for 54.67% of the planted area and 
constituting 70.25% of the total grain production in 2022 
[3]. Therefore, accurate monitoring of highland barley 
growth parameters, particularly plant density, is critical 
for effective crop management and yield prediction, pro-
moting precision agriculture practices and ensuring food 
security in these challenging environments [4].

Traditional crop yield estimation methods primar-
ily rely on destructive sampling or manual assessment, 
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which are time-consuming, labor-intensive, prone to 
subjectivity, and unrepresentative [5, 6]. As a result, 
they are difficult to apply to large-scale yield predic-
tions. Therefore, there is an urgent need to explore an 
efficient, accurate, and labor-saving method for large-
scale crop yield estimation. In recent years, remote 
sensing technology has provided a new method for esti-
mating large-scale crop yield estimation [7]. However, 
traditional remote sensing technologies (e.g., satellite-
based and aerospace-based) suffer from low spatial 
resolution, making it difficult to identify small objects 
like highland barley. Moreover, they are susceptible 
to weather factors like clouds and fog [8]. In contrast, 
unmanned aerial vehicle (UAV), with its merit of high 
spatial and temporal resolution, flexibility, and low cost 
[9], provides a new technical means for efficient and 
accurate detection of highland barley. However, higher-
resolution image data typically represents more pixels 
and details, which requires larger storage space and 
more sophisticated processing power, placing higher 
demands on algorithms.

Object detection techniques based on computer vision 
have achieved promising results in agriculture with the 
progress of deep learning [10]. Deep learning based 
object detection typically offers better adaptability, 
faster speed, and higher accuracy than traditional algo-
rithms [11]. Combining UAV technology, the deep learn-
ing based object detection provides an effective solution 
for accurate large-scale crop yield estimation. Currently, 
one-stage and two-stage algorithms are the most primary 
forms of deep learning based object detection. Two-stage 
object detection algorithms, such as Faster R-CNN and 
Mask R-CNN, have established themselves as effective 
approaches. However, in the realm of real-time perfor-
mance, one-stage object detection algorithms, repre-
sented by the YOLO series, have significantly surpassed 
their two-stage counterparts [12]. The YOLO algorithm 
dominates the market due to its unparalleled efficiency, 
commendable accuracy and simplified training proce-
dures, making it the first choice for many applications 
[13].

Traditional object detection algorithms often sacrifice 
detection speed for higher detection accuracy, which 
results in computationally demanding models that strug-
gle to meet real-time requirements [14]. However, detec-
tion speed is one of the most important performance 
indicators for object detection [15]. Meanwhile, real-time 
detection is fundamental for practical applications. In 
the field of object detection, since the YOLO algorithm 
is highly efficient, modularity, and easy to improve, it has 
received considerable attention.

From YOLOv1 to YOLOv10, its basic and improved 
models have been widely used in various domains. 

Mendes et  al. [16] proposed that YOLOv5 stands out 
as the superior real-time object detection model due to 
its exceptional inference speed, precision, low training 
time. Yang et  al. [17] also proposed that the YOLOv5 
algorithm has the advantages of high accuracy, speed 
and performance. In summary, YOLOv5 has become 
a popular choice in the field of real-time detection 
due to its higher detection accuracy, smaller param-
eter number and floating point operations (FLOPs), 
and ease of lightweight implementation. For example, 
Yao et al. [18] realized real-time detection of kiwifruit 
defects based on an improved lightweight YOLOv5 
model. Chen et  al. [19] developed a real-time straw-
berry diseases detection algorithm, providing a new 
way to identify and control strawberry disease. Yu et al. 
[20] devised a real-time detection of pineapple flow-
ers based on an improved lightweight YOLOv5 model. 
These research results demonstrate the significant 
advantages of YOLOv5 in terms of detection effect and 
lightweight implementation, as well as its vast potential 
for real-time application.

As the vital food crop in the Xizang Autonomous 
Region of China [21], accurate estimation of the yield of 
highland barley is significant to guarantee food security 
in China and globally. However, it is difficult to estimate 
highland barley yield by traditional methods, which 
face challenges in accurately estimating highland bar-
ley yield, and existing research on crop yield estimation 
based on object detection still pays limited attention to 
highland barley. Therefore, it is essential to explore the 
role of object detection technology in highland barley 
yield estimation and management. The highland barley 
spike, a key component of the plant, exhibits distinct 
color and morphological characteristics compared to 
other parts, making it a reliable indicator to identify 
highland barley. Moreover, because the highland barley 
harvest time varies in different growth periods, assess-
ing the growth period of highland barley can provide 
more detailed yield estimation and management of 
highland barley.

Therefore, we propose a lightweight model based on 
the improved YOLOv5 algorithm for the detection of 
highland barley spike. Aiming to meet the demands 
for real-time detection, simplicity and lightweight are 
achieved while ensuring detection accuracy. The effec-
tiveness of the proposed method is verified by compara-
tive analysis with existing object detection algorithms. 
This study provides an efficient new method for real-time 
detection, and precise management of highland barley, 
and promotes the intelligent and modern development of 
the highland barley industry.
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Materials and methods
Study area
The study area is located in Sangzhuzi District ( 82◦00′ E 
- 90◦20′E , 27◦23′N - 31◦49′N ) and Lazi County ( 87◦24′E 
- 88◦21′E , 28◦47′N - 29◦37′N ) in Rikaze City, Xizang 
Autonomous Region, China (Fig.  1). Rikaze belongs to 
the typical Qinghai-Xizang Plateau region, character-
ized by a plateau subfrigid semi-arid climate, with an 
average annual precipitation of 400 mm, an annual tem-
perature of 6.3◦C , and an average altitude above 4,000 m. 
The region has thin air, and low air pressure, low air 
oxygen content, but sunny, strong ultraviolet rays, long 
sunshine hours, and an average annual sunshine time of 
3300 h, providing a unique condition for highland barley 
growth. As one of the most widely planted highland bar-
ley regions in China, Rikaze City is known as the “home 

of highland barley in the world”. According to the Depart-
ment of Agriculture and Rural Affairs of Xizang Autono-
mous Region statistics, Rikaze City has a highland barley 
planting area of more than 60000 hectares, with an out-
put of 408,900 tons, accounting for 49.13% of the region’s 
total output in 2022 [22]. This underscores its signifi-
cance as a vital “ granary of Xizang”.

Figure  1b shows the Quxia Township of Lazi County. 
Quxia Township is mainly agricultural and situated 
within the Yarlung Zangbo River Basin, which is rich in 
water, flat, and has good soil texture, providing ideal nat-
ural conditions for crop growth. Figure 1d shows Nieix-
iong Township in Sangzhuzi District. Sangzhuzi District 
has sufficient water sources, which are suitable for the 
growth of highland barley and other alpine crops, and 
is the main agricultural area of Rikaze. Among them, 

Fig. 1  Study area in Rikaze City, Xizang Autonomous Region. a Geographic location of the study area. b Overview of the highland barley field 
during the growth stage. c Details of highland barley plants during the growth stage. d Overview of the highland barley during the maturation 
stage. e Details of highland barley during the maturation stage. The Rikaze City standard map is downloaded from http://​zrzyt.​xizang.​gov.​cn/​fw/​
zyxz/​202004/​P0202​40716​64504​32572​82.​jpg (ZangS (2024) 034, approved by the Department of Natural Resources of Xizang Autonomous Region), 
and the base map has not been modified

http://zrzyt.xizang.gov.cn/fw/zyxz/202004/P020240716645043257282.jpg
http://zrzyt.xizang.gov.cn/fw/zyxz/202004/P020240716645043257282.jpg
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Nierixiong Township is known as “the land of plenty”, 
with abundant water resources and fertile soil, which is 
suitable for agricultural development. These two loca-
tions have extensive highland barley cultivation areas and 
abundant yields, making them ideal sites for conducting 
highland barley object detection research.

Overall workflow
In this study, we propose a deep learning based object 
detection algorithm to detect and count highland barley 
spikes in UAV-based images, and the overall workflow 
is shown in Fig.  2. (1) Data acquisition: image acquisi-
tion using a UAV with a visible light sensor. (2) Data pre-
processing: using a simple code for automatic cropping 
to crop the original image into uniform-sized subgraphs, 
avoiding the fuzzy edge areas, and screening the middle 
part of the subgraphs with higher quality for the study. 
(3) Dataset building: using LabelImg software (version 
1.8.6) to label the highland barley in the screened image, 
ensuring that each highland barley spike is located in the 
center of the bounding box, and producing a highland 
barley image dataset. (4) Model evaluation: comparing 
the accuracy of different object detection algorithms for 
the application of highland barley spike recognition and 
the size and complexity of the algorithms to validate this 
study’s proposed model’s complexity to substantiate the 
performance merits of our proposed methodology in this 
study.

Dataset generation
Data acquisition and preprocessing
To comprehensively assess the impact of highland barley 
growth stages on model recognition accuracy, this study 
collected highland barley image data in different periods 
and locations. Specifically, the growth highland barley 

images were acquired on August 8, 2022, in Lazi County, 
and the transition and maturation highland barley images 
were acquired on August 23, 2023, in Sangzhuzi District. 
These two dates were chosen based on the fact that high-
land barley in the Rikaze region is usually harvested in 
September, when a small amount of growing highland 
barley and a large amount of mature highland barley exist 
in the field at the same time, providing effective samples 
for the model to distinguish between different growth 
stages.

In this study, we used a DJI Air 2S UAV to collect data, 
which was equipped with a 1-inch 20-megapixel vis-
ible sensor (pixel size: 2.4µm , equivalent focal length: 
22 mm), enabling to effectively capture the fine features 
of highland barley in the field. Finally, we acquired 501 
RGB images with a resolution of 5472× 3648 pixels. 
Since the dense distribution of highland barley, the small 
size spikes, and the edges of the UAV aerial images fre-
quently appear blurred. Therefore, it is difficult to directly 
use the original images for labeling. To enhance the effi-
ciency and accuracy of data annotation, we adopt the 
following preprocessing process. (1) image segmenta-
tion: each aerial image was divided into 35 equal parts 
(5 rows × 7 columns) using code; (2) regional screening: 
selecting the segmented 3× 3 subimages located in the 
middle region of a total of 9 subimages to be annotated, 
which effectively avoids the edge of the fuzzy region and 
ensures the quality of the annotated data (Fig. 2).

Data annotation, augmentation and partitioning
In this study, we use LabelImg software to annotate the 
selected highland barley images, ensuring that each 
highland barley spike was centered within its bound-
ing box. To achieve more accurate yield estimation and 
management, the growth stages of highland barley were 

Fig. 2  Overall workflow
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distinguished based on the color differences of the spikes: 
highland barley spikes that were green were labeled as 
growth period, while those that were golden yellow were 
labeled as maturation period. This approach aims to ena-
ble the model to differentiate between the various growth 
stages of highland barley, and thereby improve the accu-
racy of yield estimation and management.

Deep learning, as a data-driven technique, requires a 
large number of training samples in order to learn the 
multi-level features of the target for better detection [23]. 
Data augmentation can effectively improve the robust-
ness and adaptability of the model by increasing the 
diversity of samples [24]. In this study, data enhance-
ment is performed on the original dataset using geomet-
ric distortion, adding noise, occlusion, and sharpening, 
as shown in Fig.  3. Among them, geometric distortion 
uses random rotation ( 0◦, 90◦, 180◦, 270◦ ) and flip to 
strengthen the model’s detection ability to diverse angles. 
Meanwhile, we also added noise, occlusion, and sharpen-
ing to boost the model’s performance to recognize high-
land barley in complex environments.

Before data augmentation, 135 images were labeled, 
which were then processed to create the final data-
set containing a total of 2970 images. To train and vali-
date the performance of the object detection model, the 
labeled data are divided into a training set and a valida-
tion set in the ratio of 8:2 to construct the highland bar-
ley spikes recognition dataset.

Depthwise separable convolution
To improve the computational effectiveness of the 
model, this study introduces depthwise separable 
convolution (DSConv) into the neck network of the 
YOLOv5 model. The standard convolution operation 
is decomposed by DSConv into depthwise convolu-
tion and pointwise convolution. This decomposition 
reduces the number of parameters required for con-
volutional computations and effectively improves the 
utilization efficiency of kernel parameters [25]. As 
shown in Fig.  4, depthwise convolution is performed 
first, applying independent convolution operations 
to every individual channel to the input feature map. 

Fig. 3  Data augmentation. a Geometric distortion. b Noise. c Occlusion. d Sharpening

Fig. 4  Depthwise separable convolution
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Subsequently, pointwise convolution fuses the feature 
maps of all channels, generating the final output fea-
ture map.

The parameters are calculated based on the kernel 
size ( k× k ), the number of input channels (in chan-
nels), and the number of output channels (out chan-
nels). The number of parameters for traditional 
convolution is given by the Eq. 1.

For DSConv, the depthwise convolution, independent 
convolution operations are applied to every individual 
channel of the input feature map. The number of param-
eters for depthwise convolution is given by the Eq.  2. 
Subsequently, pointwise convolution uses a 1× 1 convo-
lution to fuse the feature maps of all channels, generating 
the final output feature map. The number of parameters 
for pointwise convolution is given by the Eq. 3.

Compared to the traditional convolution, the DSConv 
significantly decreases the quantity of parameters 
required for convolution calculations by separating 
the correlations between spatial dimensions and chan-
nel dimensions. This reduction maintains the network’s 
performance while lowering computational complexity, 
facilitating model lightweight, and making it easier to 
deploy on resource-constrained devices.

Ghost convolution
To further reduce model parameters and computa-
tional burden, this study introduces ghost convolu-
tion (GhostConv) into the YOLOv5 model to replace 
standard convolution. The traditional convolution 
operation maps all channels of the input feature map 
with convolution, which is prone to produce redun-
dant features and requires a large amount of parameter 
and computational resources [26]. Ghost convolution 
extend intrinsic feature maps through simple linear 
operations, such as unit mapping and linear transfor-
mation. [27]. The network structures of traditional 
convolution and GhostConv are shown in Figs.  5 and 
6, respectively.

Compared to traditional convolution, GhostConv 
generates additional feature maps through simple linear 
operations, significantly reducing the model’s compu-
tational complexity while maintaining high detection 
accuracy. This characteristic makes it widely applicable 
in lightweight models.

(1)
Parameters = k × k × in channels × out channels

(2)Parameters = k × k × in channels

(3)
Parameters = 1× 1× in channels × out channels

Convolutional block attention module
This study introduces a convolutional block attention 
module (CBAM) into the YOLOv5 model to replace 
the C3 module to further strengthen the detection per-
formance of the object detection network. CBAM is a 
lightweight attention mechanism module that can direct 
attention to important feature information to improve 
the model’s recognition ability [28]. CBAM incorpo-
rates the channel attention module (CAM) and the spa-
tial attention module (SAM), as shown in Fig. 7 [29]. The 
CAM focuses on identifying the crucial weights of indi-
vidual channels, enhancing the important feature chan-
nels and suppressing the unimportant feature channels. 
The SAM aims to discern the important weight of each 
spatial location and highlight important feature regions. 
This dual attention mechanism effectively improves the 
image recognition performance of the model.

Improved YOLOv5 network architecture
YOLOv5 is an efficient one-stage object detection model. 
Its detector primarily consists of a backbone network, a 
neck network, and a head network [30]. Based on net-
work depth and width, YOLOv5 models can be catego-
rized into YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, 
and YOLOv5x. With the smallest storage space require-
ment, the fewest parameters, and the lowest FLOPs, the 
YOLOv5n model is suitable as a baseline for lightweight 
object detection tasks.

Therefore, this study adopted the YOLOv5n model as 
the baseline and implemented modifications to its net-
work structure to enhance its performance in highland 
barley spike detection. The improved YOLOv5 net-
work structure is shown in Fig. 8. Firstly, DSConv mod-
ule is introduced into the neck network to reduce the 
number of parameters required for convolutional com-
putation, and thus improve network computational effi-
ciency. Secondly, GhostConv module is introduced into 
the backbone network to further decrease the model’s 
parameter count and computational complexity. Lastly, 
CBAM module is incorporated into the neck and back-
bone networks to improve the ability of the model to 
pay attention to the key objects in complex backgrounds 
improving the recognition accuracy of the model.

Fig. 5  General convolution
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Performance metrics
In this study, we select the following metrics as indica-
tors to evaluate the performance of the object detec-
tion model. Precision (P) and recall (R) are important 
indicators for the evaluation of object detection perfor-
mance, and the higher values of P and R indicate the 
better detection ability of the model, as shown in Eqs. 4 
to 5.

where TP, FP, and FN respectively represent the number 
of correctly detected highland barley (true positives), the 

(4)P =
TP

TP + FP

(5)R =
TP

TP + FN

Fig. 6  Ghost convolution

Fig. 7  Convolutional block attention module

Fig. 8  Improved YOLO network structure diagram
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number of falsely detected highland barley (false posi-
tives), and the number of missed detections of highland 
barley (false negatives).

The F1 score is calculated as the harmonic mean of P 
and R, providing a comprehensive evaluation of a model’s 
performance, as shown in Eq. 6.

The average precision (AP) is the area under the P and 
R curve. This metric measures the model’s sensitivity to 
objects and reflects the overall performance of the model, 
as shown in Eq. 7 The mean average precision (mAP) is 
the average of all APs, as shown in Eq. 8.

where pi(R) denotes the PR curve plotted using precision 
and recall, and N is the number of categories.

In addition, FLOPs and the number of parameters are 
used as a measure of model complexity and lightweight 
effect.

Results
Comparison of lightweight models
In this study, in order to select lightweight modules suita-
ble for highland barley spikes, the effectiveness of Mobile-
Netv2 [31], MobileNetv3 [32](available in both large and 
small versions), Shufflenetv2 [33], DSConv, and Ghost-
Conv in detecting highland barley spikes was compared, 
as shown in Table 1. Soviany et al. [34] pointed out that 
an important consideration in the object detection task 
is to balance the accuracy and speed of detection. There-
fore, in order to balance these two factors, two modules, 
DSConv and GhostConv, are chosen for this experi-
ment to achieve lightness. These two models not only 

(6)F1 = 2×
P × R

P + R

(7)AP =

∫ 1

0

pi(R) dR

(8)mAP =
1

N

N∑
i=1

∫
1

0

pi(R) dR

reduce the computation and FLOPs of the model, but 
also slightly improve the experimental accuracy, which is 
perfectly suited to the research purpose. Although other 
lightweight models perform well in lightweight, espe-
cially MobileNetv2 greatly reduces the size and computa-
tion of the model, it also inevitably reduces the accuracy 
of the model to a greater extent, making them unsuitable 
for the detection of highland barley spikes.

Model training results
The trend of accuracy metrics of the improved YOLOv5 
model in the training process is shown in Fig. 9. In this 
study, the specific details of the experimental hardware 
and software environment are presented in Table 2. The 
results indicate that precision, recall, mAP, and F1 score 
improve gradually over 300 epochs until leveling off at 
92.1%, 86.3%, 93.1%, and 0.89, respectively. Meanwhile, 
the loss value continues to decrease and approaches the 
minimum value of 0.23, which indicates that the model is 
well trained and converges to an optimal state.

Ablation experiments
In this study, the effect of different modules on the model 
performance was assessed by ablation experiments, 
as shown in Table  3. The results show that the final 
improved model M7 combining the DSConv, GhostConv 
and CBAM modules achieved the best performance: 
accuracy of 92.2%, recall of 86.2%, and an F1 score of 
0.892. The AP0.5 for highland barley growth and matura-
tion were 92.7% and 93.5%, respectively, and the mAP0.5 
was 93.1%. And the baseline model YOLOv5n had an 
accuracy of 89.1%, a recall of 83.1%, and an F1 score of 
0.860, mAP0.5 of 90.3%. Compared with the baseline 
model, M7 has an overall improvement in these metrics. 
In addition, the number of parameters and FLOPs have 
been reduced to 1.2 M and 4.1 G, respectively, which rep-
resent 70.6% and 75.6% of the baseline model. This indi-
cates that the combined use of DSConv, GhostConv and 
CBAM modules can effectively improve the recognition 
accuracy of the model for highland barley spikes, and at 

Table 1  Comparison of lightweight models

Model P/% R/% F1 mAP0.5/% Parameter/106 FLOPs /G

YOLOv5n 89.1 83.1 86.0 90.3 1.76 4.1

YOLOv5n+Mobilenetv2 66.3 60.0 63.0 63.6 0.21 0.8

YOLOv5n+Mobilenetv3_large 75.7 74.9 75.3 78.3 0.98 2.5

YOLOv5n+Mobilenetv3_small 68.9 70.5 69.7 72.5 0.45 0.9

YOLOv5n+Shufflenetv2 62.7 56.6 59.5 59.0 0.22 0.5

YOLOv5n+DSConv 90.7 85.0 87.8 92.1 1.51 3.6

YOLOv5n+GhostConv 92.7 86.3 89.4 93.2 1.46 3.6
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the same time achieve the lightweight of the model, mak-
ing it more suitable for practical application scenarios.

For other improvement methods, introducing the 
DSConv or GhostConv module alone can achieve model 
lightweighting while maintaining or even improv-
ing model accuracy. Among them, the introduction of 
the GhostConv module (M2) has the most significant 
effect on decreasing the number of parameters and 

calculations. The F1 score reached 0.895, and the number 
of parameters and FLOPs were reduced to 1.46 M and 3.6 
G respectively. The introduction of the CBAM module 
(M3) significantly enhanced the model accuracy without 
increasing the quantity of parameters and FLOPs, and the 
F1 score reached 0.914. In order to verify the effective-
ness of various modules, we have introduced the complex 
number module at the same time. M4, which introduces 

Fig. 9  Variation trend of different accuracy indicators during the model training

Table 2  Software and hardware environments

Item Parameters and versions

Central processing unit (CPU) AMD Ryzen 7 7840H w 8-core processor @ 3.8GHz

Memory (RAM) 64 GB

Solid state disk (SSD) 1TB

Graphics card (GPU) NVIDIA RTX 4060 GPU (8GB)

Operating system (OS) Windows 11

Programming environment (ENVS) Torch 2.0.1 + CUDA11.7 + Python 3.11.4

Table 3  Result of ablation experiment

* means that the improvement factor was used

Model DSConv Ghost
Conv

CBAM P/% R/% F1 AP0.5

growth maturation
mAP0.5

/%
Parameters
/106

FLOPs
/G

YOLOv5n 89.1 83.1 0.860 90.7 89.9 90.3 1.7 4.1

M1 * 90.7 85.0 0.878 92.0 92.2 92.1 1.5 3.6

M2 * 92.7 86.5 0.895 93.1 93.3 93.2 1.4 3.6

M3 * 93.1 89.8 0.914 94.8 95.3 95.0 1.7 4.2

M4 * * 92.0 85.2 0.885 92.3 92.7 92.5 1.2 3.0

M5 * * 91.5 86.4 0.889 92.6 93.4 93.0 1.5 3.6

M6 * * 92.6 87.7 0.901 93.8 94.0 93.9 1.4 3.6

M7(Ours) * * * 92.2
(+3.1)

86.2
(+3.1)

0.892
(+0.032)

92.7
(+2.0)

93.5
(+3.6)

93.1
(+2.8)

1.2
(70.6%)

3.1
(75.6%)
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the DSConv and GhostConv modules at the same time, 
reduces the parameter amount to 1.21 M, and the F1 
score increases to 0.885. M5, incorporating both DSConv 
and CBAM modules, reduces parameters to 1.52 M and 
improves the F1 score to 0.889. M6, incorporating both 
GhostConv and CBAM modules, reduces parameters to 
1.48 M and improves the F1 score to 0.901.

Comparison with different algorithms
To further verify the effectiveness of the improved model 
M7, this study compared it with the current mainstream 
two-stage and one-stage object detection algorithms, as 
shown in Table 4.

The M7 outperforms Faster R-CNN, Mask R-CNN, 
and RetinaNet in detection performance while maintain-
ing the advantage of being lightweight. Compared with 
YOLOv7 and YOLOv8n, although the accuracy is slightly 
lower, it has significant advantages in the number of 
parameters and FLOPs, rendering it more appropriate for 
real-time detection scenarios.

Visualization comparison
Figure  10 shows the detection results of visualization 
comparison between the original YOLOv5n and the 
improved model. In this figure, the red border represents 
the highland barley spikes during the growth period, the 
blue border represents the highland barley spikes dur-
ing the maturation period , the orange arrows repre-
sent missed detections, and the purple arrows represent 
false detections. During the growth period, YOLOv5n 
detected only 28 highland barley spikes, while M7 
detected 41. In the transition period, both YOLOv5n and 
M7 detected 6 growth highland barley spikes and 2 mat-
uration highland barley spikes, but YOLOv5n showed 
one missed and false detection. During the maturation 
period, YOLOv5n detected only 2 highland barley spikes 
while M7 detected 3. It indicates that the improved 
model outperforms the original YOLOv5n model in 
detecting small target highland barley spike particles. 

Table 4  Comparison of different object detection algorithms

Model mAP0.5 Parameters/106 FLOPs/G

M7(Ours) 93.1 1.2 3.1

YOLOv5n 90.3 1.7 4.1

Faster R-CNN 70.6 13.9 14.0

Mask R-CNN 73.1 14.1 14.0

RetinaNet 67.8 11.7 55.6

YOLOv7 94.8 36.4 103.2

YOLOv8n 93.8 3.0 8.1

Fig. 10  Comparative analysis of highland barley spike detection using YOLOv5n and the improved YOLOv5 model. Red bounding boxes indicate 
highland barley spikes in the growth stage, while blue bounding boxes represent spikes in the maturation stage. Orange arrows highlight instances 
of missed detection by the YOLOv5n model, and purple arrows indicate false positive detections by the YOLOv5n model
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Meanwhile, the improved model can maintain high rec-
ognition accuracy even in complex field environments, 
distinguish highland barley spikes with different growth 
states, and successfully complete the target detection 
task. This affords a new way for accurate real-time moni-
toring of highland barley spikes.

Discussion
Model performance comparison
This study addresses the challenge of accurately identify-
ing highland barley spikes under field conditions, includ-
ing partially shaded scenarios, by proposing a highland 
barley spike detection method based on an improved 
YOLOv5. By introducing DSConv, GhostConv, and 
CBAM modules, a lightweight and efficient highland 
barley spike detection model (M7) was successfully con-
structed. This model achieves accurate identification of 
highland barley spikes at different growth stages, which 
offers a new approach for real-time highland barley 
detection and rapid yield estimation. The results dem-
onstrate that the M7 has achieved better performance 
in detection accuracy, model size, and computation effi-
ciency. Compared with two-stage algorithms such as 
Faster R-CNN, Mask R-CNN and RetinaNet, the model 
has significant advantages in detection accuracy, the 
number of parameters and FLOPs. Compared with one-
stage algorithms such as YOLOv7 and YOLOv8, the 
model also has significant advantages in the number of 
parameters and FLOPs, which is more suitable for real-
time detection scenarios.This is mainly attributed to the 
efficient and lightweight design of the YOLOv5 network 
itself [35], as well as the lightweight modules and atten-
tion mechanism introduced in this study.

Recently, the series of YOLO algorithms have attracted 
much attention in the realm of object detection owing 
to their speed and efficiency. Among them, YOLOv5 
has become one of the preferred solutions for light-
weight object detection due to its flexible network struc-
ture and excellent performance. This study selected 
YOLOv5n as the base model and enhanced its per-
formance by adding DSConv, GhostConv, and CBAM 
modules. Compared with the latest algorithms such as 
YOLOv7 [36] and YOLOv8 [37], the improved model 
has slightly lower mAP but shows significant advantages 
in lightweight design. YOLOv7 and YOLOv8 often adopt 
deeper and more complex network structures to achieve 
higher detection accuracy, which results in a substan-
tial increase in model parameters and computational 
cost [38]. However, in practical applications, especially 
on resource-constrained mobile devices or embedded 
systems, model lightweight is particularly important. 
Therefore, the improved YOLOv5 model proposed in this 

study achieves model lightweight while maintaining high 
detection accuracy, which makes it more practical.

Impact of model improvement strategies
To evaluate the influence of our lightweight strategies on 
model performance, this study employed the number of 
parameters and FLOPs as metrics, consistent with the 
metrics used by Zhang et al. [39] and Sun et al. [40]. To 
achieve model lightweight, this study uses DSConv and 
GhostConv to replace standard convolution operations. 
These two methods can effectively decrease the number 
of parameters and enhance detection efficiency while 
maintaining high detection accuracy, as validated by 
Yang et al. [41] and Chen et al. [42] in tomato and tea bud 
detection algorithms, respectively.

To address the difficulty of effectively extracting fea-
tures from complex UAV aerial highland barley images 
using the original network structure, this study incorpo-
rates the CBAM attention mechanism. Zhang et al. [43]
pointed out that attention mechanisms are a common 
method to enhance the feature extraction capability of 
YOLOv5. CBAM can capture the correlation between 
features in different dimensions, thereby improving the 
performance of image recognition tasks. In this study, 
the CBAM module was introduced to replace the stand-
ard C3 module, resulting in significant detection accu-
racy improvements. This has also been verified in the 
study of fresh tea bud identification by Guo et  al. [44]. 
In addition, due to the overlap between highland barley 
spikes and the differences in individual growth, this study 
also adopts data augmentation to increase the number 
of training instances and suppress overfitting, thereby 
improving the model’s generalization ability and robust-
ness [45].

Limitations and future work
Although the improved YOLOv5 model has been 
enhanced in terms of parameters, complexity, and 
detection performance, some limitations remain. 
Firstly, since the data collection time is mostly con-
centrated at noon, the influence of different lighting 
environments on the object detection model is less 
considered. Although data augmentation can simu-
late images under different lighting conditions through 
optical transformation, this does not fundamentally 
solve the problem of insufficient generalization abil-
ity in diverse lighting environments [46]. Future work 
will focus on assessing more images in different light-
ing conditions to enrich the dataset and improve the 
model’s transferability. Secondly, the rectangular anno-
tation method used in this study may affect the detec-
tion accuracy. Future work could explore more refined 
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annotation methods, such as polygon or ellipse anno-
tation [47]. Finally, Due to the presence of blurring 
around the original image pictures captured by the 
UAV and the small target of the barley spike, the blur-
ring will have a relatively large impact on the detec-
tion results. Therefore, this part of the blurred data is 
not used in the dataset of this study, so it is difficult to 
detect the target in the original image captured by the 
UAV. So to address against this problem, this experi-
ment designs a simple code for automatic cropping, 
which automatically crops, classifies and saves the 
images after acquiring the original images captured by 
the UAV. Then, the images to be detected in the speci-
fied folder are read for target detection. This method 
requires an extra step of processing the image, which is 
not conducive to real-time detection. In the future, bet-
ter methods need to be investigated to achieve detec-
tion of small object for fuzzy images.

Conclusion
This study present a lightweight YOLOv5 model for the 
identification and counting of highland barley spikes in 
UAV aerial images. By introducing lightweight modules 
and an attention mechanism, the model achieves light-
weight while maintaining high recognition accuracy. 
Experimental results demonstrate that the improved 
model is superior to other mainstream object detection 
algorithms in terms of recognition accuracy and count-
ing accuracy. Notably, the final improved model (M7) 
achieves the best performance acorss all metrics: preci-
sion increased to 92.2%, recall increased to 86.2%, F1 
score reached 0.892, and mAP0.5 increased to 93.1%. 
Compared to the baseline model, the number of param-
eters and computations are reduced by 70.6% and 75.6%, 
respectively. These improvements make the model par-
ticularly suitable for real-time detection in resource-
constrained environments, such as UAVs or embedded 
systems. This study provides an efficient and accurate 
solution for highland barley spike detection, contributing 
to growth monitoring, and precision agricultural man-
agement. Furthermore, the proposed lightweight archi-
tecture demonstrates potential for broader application 
in other agricultural contexts, offering a reference frame-
work for real-time crop detection using UAV technology.
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