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due to diseases and up to 30% in severe cases; therefore, 
it is important to realize accurate and rapid identification 
of soybean leaf diseases.

Traditional soybean disease identification methods 
rely mainly on manual experience and simple image pro-
cessing techniques, which are not only time-consuming 
and labor-intensive but also have low accuracy [4]. In 
recent years, with the development of image processing 
and artificial intelligence, machine and deep learning 
have received extensive attention in agriculture, includ-
ing disease recognition [5], weed detection [6], quality 
grading [7], and growth monitoring [8]. For disease rec-
ognition, Zeng et al. proposed the LDSNet model for 
maize leaf disease recognition [9] and designed the IDDC 
module, the feature fusion module CASF, and the ASCE 
loss function, which resulted in a recognition accuracy 
of 95.4%. Fu et al. proposed a lightweight CNN model 

Introduction
Soybean is an important global food and oilseed crop, but 
its growth is often affected by a variety of diseases, result-
ing in reduced yield and quality [1]. Three categories of 
pathogens cause leaf diseases in soybeans: fungal, bacte-
rial, and viral [2], which are usually spread by wind, rain, 
insects, or agricultural practices, resulting in frequent 
disease occurrences [3], limiting the quality and yield of 
soybeans and causing significant losses. In China, soy-
bean yields are reduced by approximately 10% per year 
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Abstract
Rapid and accurate identification of soybean leaf diseases is crucial for optimizing crop health and yield. We 
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for recognizing pepper leaf disease [10]. The proposed 
CNN model uses the GGM-VGG16 architecture, which 
incorporates the Ghost module, global mean pooling, 
and multi-scale convolution, and achieves 100% recog-
nition accuracy for pepper leaf disease in human palm 
background images. Yang et al. proposed the LSGNet 
model to achieve fast identification of tomato diseases 
[11]. The LSGNet backbone consisted of SGECA and 
ParcSG modules. The former suppresses the interfer-
ence of complex environments and focuses on extracting 
useful feature information. The latter has a global sens-
ing field and provides more detailed feature information 
for disease identification, and LSGNet achieved an accu-
racy of 95.54% in recognizing tomato diseases. Lin et al. 

designed a peanut leaf disease monitoring system based 
on a lightweight deep learning model [12], which facili-
tates disease detection, improves monitoring efficiency, 
and reduces labor costs. Meanwhile, a large number 
of researchers have utilized deep learning to recognize 
soybean leaf diseases, advancing research on soybean 
diseases [13]. Pan et al. proposed the TFANet model to 
achieve the recognition of multi-categories of soybean 
leaf diseases [14]. The main component is the TFA mod-
ule, which achieves powerful feature extraction capabil-
ity by two-stage aggregation of feature information from 
different convolutional layers to achieve powerful fea-
ture extraction capability. TFANet has only 1.18  MB of 
parameters, and the accuracycan reach 98.18%. Yu et al. 

Graphical abstract 

Highlights
 • We propose a cell P system with membrane division and dissolution rules for rapid identification of soybean 

leaf diseases that improves model real-time performance by reducing the amount of computation.
 • The EFA and SGEFA membranes were designed to reduce background interference and focus on disease 

information.
 • Fuzzy controllers were designed to control the triggering of membrane division and membrane dissolution 

rules, thus controlling the number of SGEFA membranes in parallel and dynamically adjusting the model 
structure to avoid redundancy.

 • A self-developed soybean disease dataset containing 8883 images was obtained.
 • The method proposed in this study was successfully deployed on edge devices and could provide a new basis 

for soybean disease diagnosis.

Keywords Soybean leaf disease, Cell P system, Efficient feature attention, Fuzzy control, Convolutional neural 
network, Disease classification



Page 3 of 18Song et al. Plant Methods           (2025) 21:39 

addressed the problems of high complexity, high com-
putational volume, and difficulty in applying current 
deep learning-based disease diagnosis models to com-
monly used portable mobile terminals, etc., and pro-
posed a light-weight soybean disease diagnosis model 
based on the attention mechanism and residual neural 
network, named RANet18 [15], with a model size of only 
40.64 MB and an accuracy of 96.5%. Karlekar et al. pro-
posed a soybean leaf disease classifier called SoyNet [16]. 
The SoyNet consists of two modules. The first module 
segmented the background. The second module was used 
to recognize the segmented leaf image with an accuracy 
of 98.14%. Zhang et al. designed a multi-feature fusion 
Faster R-CNN model for the accurate detection of soy-
bean leaf diseases in complex scenes with an accuracy of 
83.34% [17]. Wang et al. proposed a convolutional neural 
network-based image recognition model for different dis-
ease stages of soybean leaves [18] to address the problem 
of insufficient data to realize the recognition of soybean 
bacterial spot disease with an accuracy of 99.64%. Bevers 
et al. produced a soybean leaf disease dataset with eight 
categories and used transfer learning to achieve 96.8% 
accuracy in recognizing the original field soybean disease 
images [19]. Santana et al. collected hyperspectral images 
of soybean rust and used machine learning to classify 
them. Experimental results showed that the SVM algo-
rithm achieved an accuracy of more than 90% [20]. Stone 
et al. analyzed the associations of soybean dwarf virus 
isolates with soybean aphid vectors and severe diseases, 
and constructed a soybean dwarf virus isolate global 
phylogenetic research system [21]. Zhu et al. proposed 
an improved YOLO model [22]; that can detect soybean 
pests with complex backgrounds, and the detection mAP 
of common soybean pests reached 86.9%. Tetila et al. 
used the YOLOv3 model to realize the real-time detec-
tion of soybean pests [23].

From the above studies, it can be seen that to achieve 
fast and accurate identification of diseases on soybean 
leaves, related studies have mainly focused on lightweight 
[24], and the soybean disease identification models with 
the smaller models mentioned above were mainly real-
ized by constructing small model architectures using 
depth-separable convolutions. However, there are other 
methods to make the model lightweight, such as model 
pruning [25], knowledge distillation [26], and model 
compression [27]. Although these methods have made 
significant progress in speeding up models and reducing 
their complexity, they are more applicable to large mod-
els and less effective on small model architectures with 
fewer channels and fewer layers [28]. The model selec-
tion layer pruning method for small model architectures 
is an effective approach [29, 30], where the efficiency can 
be improved by removing all layers from the network 
while maintaining the network performance. However, 

the method of culling or merging layers, while reducing 
the network depth to reduce latency, also introduces a 
serious problem: the kernel size increases. In this case, 
although the depth is reduced, the computational effort 
of a single convolutional operation increases significantly 
owing to the increase in the kernel size, resulting in the 
delay reduction effect being canceled out.

To this end, we propose a cell P system with membrane 
division and dissolution rules to achieve the rapid identi-
fication of soybean diseases. The model can dynamically 
adjust the model architecture without increasing the ker-
nel size, thus realizing the fast identification of soybean 
diseases. The main contributions of this study are as 
follows: 

(1) A cell P system with membrane division and disso-
lution rules (DDC-P system) was proposed. The DDC-P 
system can dynamically adjust the model structure, avoid 
model redundancy, and achieve the rapid and accurate 
identification of soybean diseases.

(2) To efficiently extract soybean leaf features and 
reduce the number of model parameters, we designed 
a membrane with a lightweight sandglass structure and 
efficient feature attention (SGEFA).

(3) A fuzzy controller was designed to realize the 
control of membrane division and membrane dissolu-
tion rule triggering using a fuzzy controller, which can 
dynamically adjust the number of SGEFA in parallel in 
the DDC-P system more effectively.

(4) In addition, we designed efficient feature attention 
(EFA) to reduce the interference of complex environ-
ments on the model performance and focus on extracting 
key disease feature information.

Materials and methods
Soybean disease dataset
The dataset used for the experiment was a soybean dis-
ease dataset collected from 2023 to 2024 in Huainan 
City (32.6264° N, 116.9969° E), Anhui Province, China. 
Soybean leaf images were captured using a Fuji digital 
camera and the rear camera of a Honor cellphone. The 
soybean disease dataset contained 8883 images with real 
field and pure white backgrounds, which were classified 
into three main categories: healthy, insect pests, and dis-
ease. The images are uniformly resized to 256 × 256 pix-
els and randomly divided into train, test, and validation 
sets in the ratio of 8:1:1. Figure 1 shows example images 
for each category. Table  1 presents the specific division 
results for the soybean disease dataset.

DDC-P system
The p system is a computational model inspired by the 
structure of biological cell membranes [31]. The p system 
enables parallel computation by simulating biochemical 
reactions and information transfer processes in the cells. 
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The p system can be of three types: cell, tissue, and neu-
ral p systems. Cell P systems are widely used in various 
fields [32, 33]. To accurately and quickly recognize soy-
bean diseases, we combined the p system and convolu-
tional neural network to propose a new hypergraph cell 
P system model called the DDC-P system. The overall 
architecture of the DDC-P system is shown in Fig. 2. The 

Table 1 Division of soybean disease dataset
Classes Train set Validation set Test set Total
Diseases (0) 3747 468 469 4684
Healthy (1) 931 117 116 1164
Insect pests (2) 2428 303 304 3035
Total 7106 888 889 8883

Fig. 2 Membrane structure of the DDC-P system

 

Fig. 1 Example images of the soybean disease dataset
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DDC-P system consists mainly of an input membrane, 
n SGEFA membranes, an EFA membrane, and an out-
put membrane. A membrane can be contained by more 
than one membrane at the same time in the hypergraph 
cell P system, in which the input membrane type is con-
tained by n SGEFA membranes simultaneously, and the 
input membranes are indicated by dashed lines in Fig. 2. 
When the soybean disease image enters the DDC-P sys-
tem, the shallow features of the image are first extracted 
by two 3 × 3 convolutions in the input membrane, and 
then the feature maps are passed into n parallel SGEFA 
membranes after reducing the number of parameters 
of the model by using 3 × 3 maximum pooling. In the 
SGEFA membrane, feature information is efficiently 
extracted, and then the feature maps are transferred to 
the EFA membrane, which first splices the n feature maps 
according to the channel direction and further fuses the 
feature information through a 3 × 3 convolution. Then, 
the EFA module is connected to the module to highlight 
the key information and suppress the interference of the 
background information, and then transfers the feature 
maps to the output membrane. In the output membrane, 
a 1 × 1 convolutional layer was used to integrate the fea-
ture maps, and global average pooling was used to fuse 
the feature information. Finally, the softmax function 
was used to classify soybean leaf disease. The detailed 

configuration information of the model is presented in 
Table 2.

Evolution rules
DDC-P system is formally defined as:

 Π = (V, O, H, µ, ω1, · · ·, ωn+3, R1, · · ·, Rn+3, i0) (1)

Where:
(1) V is a not empty finite alphabet whose object is the 

feature of the image;
(2) O ⊆ V is the output alphabet and the output algo-

rithm results;
(3) H = {Input, SGEF A1, SGEF A2 · ··, SGEF An, EF A, Out-

put}H = {Input, SGEFA1, SGEFA2 · ··, SGEFAn, EFA, Output}
, H is a set of membrane labels;

(4) µis a membrane structure, as shown in Fig. 2;
(5) ωi(1 ⩽ i ⩽ n + 3) represents the multiset of objects 

in a region i, corresponding to the feature map composed 
of features in each membrane;

(6) Ri(1 ⩽ i ⩽ n + 3) is a set of evolution rules in each 
region of membrane structure;

(7) i0 is the label of the output membrane from the 
membrane systems, i0 = Output.

The evolution rules in the DDC-P system include com-
munication rules, membrane division rules, and mem-
brane dissolution rules. It is worth noting that membrane 
division rules and membrane dissolution rules cannot be 
used simultaneously in the same membrane.

Communication rules:

 r : u → v (2)

Where: u, v are the multiple sets of objects in each mem-
brane, that is the image feature map, indicates that the 
feature map within the membrane changes from u to v 
after executing the rules, which include convolution oper-
ations, pooling operations, etc.; v ∈ {vhere, vin, vout}
, Where vhere is to indicate that the feature map v stays 
in the current membrane after the rule is executed, vin 
is to indicate that the feature map v leaves the current 
membrane after the rule is executed and enters the child 
membrane contained by the current membrane, and vout 
is to indicate that the feature map v leaves the current 
membrane after the rule is executed and enters the par-
ent membrane containing the current membrane.

Membrane division rules:

 [E] i → []j []k (3)

Where: E is the condition that needs to be satisfied to 
execute the membrane division rules, i, j, and k are the 
membrane labels. After executing the membrane division 
rule, the current membrane splits into two membranes, 

Table 2 Detailed configuration of DDC-P system
Membrane 
labelling

Configuration Input shape Output 
shape

Input Conv (k = 3, s = 2), BN, 
ReLU

256 × 256 × 3 63 × 63 × 64

Conv (k = 3, s = 1), BN, 
ReLU
Maxpool (k = 3, s = 2)

SGEFA1 Conv (k = 1, s = 1), BN, 
ReLU

63 × 63 × 64 63 × 63 × 64

PWConv (k = 1, s = 1) 63 × 63 × 64 63 × 63 × 32
EFA 63 × 63 × 32 63 × 63 × 32
PWConv (k = 1, s = 1) 63 × 63 × 32 63 × 63 × 48
DWConv (k = 3, s = 2) 63 × 63 × 48 63 × 63 × 48

•••
SGEFAn Conv (k = 3, s = 2), BN, 

ReLU
63 × 63 × 64 63 × 63 × 64

PWConv (k = 1, s = 1) 63 × 63 × 64 63 × 63 × 32
EFA 63 × 63 × 32 63 × 63 × 32
PWConv (k = 1, s = 1) 63 × 63 × 32 63 × 63 × 48
DWConv (k = 3, s = 2) 63 × 63 × 48 63 × 63 × 48

EFA Conv (k = 3, s = 1), BN, 
ReLU

63 × 63×[48×n] 63 × 63 × 128

EFA 63 × 63 × 128 63 × 63 × 128
Output Conv (k = 1, s = 1), BN, 

ReLU
63 × 63 × 128 1 × 1 × 3

GAP
FC
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and both membranes have the same substances and rules 
as before.

Membrane dissolution rules:

 [F ] i → δ (4)

Where: F is the condition that needs to be satisfied to 
execute the membrane splitting rules, i represents the 
membrane label. The membrane was dissolved after exe-
cuting the membrane dissolution rules.

Design of fuzzy controller
To realize the dynamic adjustment of the number of 
SGEFA membranes in parallel in the DDC-P system, we 
designed a fuzzy controller that calculates the validation 
set accuracy (Val_Acc) and the rate of change of the vali-
dation set accuracy (D) every 20 epochs and takes Val_
Acc and D as the inputs to the fuzzy controller, and the 
outputs are the execution or not of the membrane divi-
sion and dissolution rules.

Use the fuzzy mathematics library in Python to define 
the fuzzy sets of inputs and outputs, where the Val_acc 
is in the interval [0, 1], and its fuzzy subset is set to 
{H, M, L}, where H is a high accuracy, ranging from 0.9 
to 1. M is of medium accuracy, ranging from 0.6 to 0.9. 

L is low accuracy, with a range from 0 to 0.6. The D is in 
the interval [-1, 1], and its fuzzy subset is set to {P, Z, N}
, which is P positive change, ranging from 0.15 to 1. Z is 
no change, ranging from − 0.15 to 0.15. N denotes nega-
tive change, ranging from − 1 to -0.15. The output set is 
{E, F, O}, where E denotes the condition required to 
satisfy the membrane division rule to execute the mem-
brane division rule, F denotes the condition required 
to satisfy the membrane dissolution rule to execute the 
membrane dissolution rule, and O means that the condi-
tions needed for neither the membrane division rules nor 
the membrane dissolution rules are satisfied and the cur-
rent membrane structure does not change. Table  3 lists 
the designed fuzzy control tables.

EFA membrane
To highlight the key feature information and suppress the 
interference of background information and noise on the 
model performance, we design an EFA membrane in the 
DDC-P system, whose main module is the EFA module. 
Different from channel attention and spatial attention, we 
weight each feature to highlight important features. Fig-
ure 3 shows the designed EFA module.

As shown in Fig.  3, the EFA module encodes the fea-
ture map using both Global average pooling (GAP), Pool-
ing along the horizontal coordinate direction (XAP), and 
Pooling along the vertical coordinate direction (YAP). 
Thus, GAP is represented by Eq. (5), XAP by Eq. (6), and 
YAP by Eq. (7).

 
zc = 1

H × W

∑
0⩽i<H,0⩽j<W

uc (i, j) (5)

Table 3 Fuzzy control tables for inputs and outputs
Val_acc D

P Z N
H E O F
M E O O
L E E E

Fig. 3 EFA module
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zc (h) = 1

W

∑
0⩽i<H

uc (h, i) (6)

 
zc (w) = 1

H

∑
0⩽i<W

uc (i, w) (7)

Where: zc is the feature map on the c-th channel, H and 
W denote the height and width of the input feature map, 
respectively, uc is the feature map on the c-th channel, 
zc (h) is the output along the x-direction on the c-th 
channel, and zc (w) is the output along the y-direction on 
the c-th channel.

Next, feature maps zC (H) and zC (W ) are cascaded 
and fed into a 1 × 1 convolution with shared weights, 
which is more conducive to accurately locating the 
position of key features, to obtain a new feature map 
zC (W + H), and zC (W + H) obtained from Eq. (8).

 
zC (W + H) = Conv

([
zC (H) , zC(W )−1

])
 (8)

Where: Conv(·) denotes the 1 × 1 convolution of the BN 
layer for ReLU using the activation function first, [a, b] 
denotes the cascading of the feature maps a and b in 
the direction of the channel, and zC(W )−1 denotes the 
feature map after converting the size of zC (W ) from 
C × 1 × W  to C × W × 1.

Subsequently, feature map zC (W + H) is split into 
two feature maps zC (H ′) and zC (W ′) along the chan-
nel direction, and the size of zC (W ′) is converted from 
C × W × 1 to C × 1 × W . The resulting feature maps 
zC , zC (H ′), and zC (W ′) are activated using a sigmoid 
function to obtain the attention weights gC , gH , and gW  
denoted by Eq. (9).

 




gC = σ (zC)
gH = σ (zC (H ′))
gW = σ (zC (W ′))

 (9)

Finally, the input Z is multiplied sequentially with gC , 
gH , and gW  to obtain the final output Z ′, represented by 
Eq. (10).

 Z ′ = gC ×
(
gW ×

(
gH × Z

))
 (10)

Thus, we can see that the EFA module not only locates 
key disease information more accurately but also reduces 
the impact of background information and other infor-
mation on model performance.

SGEFA membrane
Sandler et al. proposed a lightweight model called 
MobileNetV2 [34], which is characterized by its efficient 

inversion of residual blocks. In contrast, Zhou et al. pro-
posed a novel bottleneck design called an hourglass block 
[35], which effectively reduces information loss and alle-
viates gradient confusion. Based on this, we designed an 
efficient feature extraction hourglass membrane whose 
main module is the lightweight sandglass structure and 
efficient feature attention (SGEFA), and the specific 
structure of the three is shown in Fig. 4.

In Fig. 4, we see that the SGEFA module has a similar 
structure to the original hourglass block, but there are 
also differences. First, the SGEFA module does not use 
residual connections. The main reason is that dynami-
cally adjusting the number of SGEFA membrane paral-
lels will only change the width of the model and will not 
change the depth of the model. The problem of gradient 
vanishing is not serious, so the residual connections are 
of limited usefulness but instead add unnecessary com-
putational overhead. Therefore, we remove the residual 
connections and the first depth-separable convolution. 
Second, to efficiently extract feature information, we add 
the EFA module between the two pointwise convolu-
tions to improve the feature extraction capability with-
out significantly increasing the number of parameters 
of the model. Finally, we only use the ReLU6 function 
as the activation function in the first pointwise convolu-
tion, which has the advantage of retaining more feature 
information. The ReLU function and ReLU6 function are 
shown in Eqs. (11) and (12).

 ReLU6 (x) = max (6, max (0, x)) (11)

 ReLU (x) = max (0, x) (12)

Therefore, assume that the input of the SGEFA module is 
Z and its output is:

 Z ′ = DWConv (PWConv2 (EFA (PWConv1(Z)))) (13)

Where DWConv is deep convolution, PWConv1 and 
PWConv2 are pointwise convolution, and EFA is the 
EFA module.

Performance evaluation metrics
We choose accuracy, precision, recall, F1 score, ROC 
curve, and PR curve as the performance evaluation met-
rics of the model. The formulas for accuracy, precision, 
recall, and F1 score are as follows:

 
Accuracy = TP + TN

TP + FN + FP + TN
× 100% (14)

 
Precision = TP

TP + FP
 (15)
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Recall = TP

TP + FN
 (16)

 
F1 = 2 × Precision × Recall

Precision + Recall
 (17)

Where: TP denotes the number of true positive results, 
FP denotes the number of false positive results, FN 
denotes the number of false negative results, and TN 
denotes the number of true negative results.

The receiver operating characteristic (ROC) curve 
demonstrates the overall performance of the model by 
plotting the relationship between the model’s true posi-
tive rate (TPR) and false positive rate (FPR), while the 
area under the ROC curve (AUC) is closer to 1, which 
indicates model performance.

 
TPR = TP

TP + FN
 (18)

 
FPR = FP

FP + TN
 (19)

The PR curve shows the relationship between precision 
and recall at different thresholds. AP (average precision) 
represents the average precision at different recall rates. 
Usually, the closer the AP is to 1, the better the model 
performance is.

Meanwhile, the number of parameters and frames per 
second (FPS) are chosen to evaluate the performance of 
the model in real applications. The number of parameters 
is an important indicator of inference speed and model 
size. FPS represents the number of images predicted by 
the model per second for speed evaluation.

 
FPS =

Total of images

T ime
 (20)

Experiments and results
This study uses Python and TensorFlow deep learning 
frameworks for experiments. All experiments were per-
formed on Windows 10, using an Intel (R) Core (TM) 
i7-9700  K CPU and an NVIDIA RTX2070 GPU. Our 
hyperparameters are set as follows: the loss function is a 
cross-entropy loss function, and we use the Adam opti-
mizer with the batch size set to 32.

Determination of the parallel number(n) of SGEFA 
membrane
The n is set to avoid model redundancy and better adapt 
to the input data. Therefore, we set the epoch to 300, 
the maximum number of times the membrane division 
rule can be used to 10, and the maximum number of 
times the membrane dissolution rule can be used to 5. 
The initial number of parallel SGEFA membranes is set 
to 1; the number of n is added to 1 after each execution 

Fig. 4 Specific structure of the three modules. (a) Inverted residual block in MobileNetV2, (b) Raw hourglass block, (c) SGEFA module
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of the membrane division rule, and the number of n is 
subtracted from 1 after each execution of the membrane 
dissolution rule. 20 epochs are taken as a round, and the 
Val_acc is printed once in each round. The rate of change 
of the validation set accuracy is calculated as D, denoted 
by Eq. (21). Val_acc and D are used as inputs to the fuzzy 
controller to regulate the application of membrane divi-
sion and dissolution rule, while also updating the fre-
quency of their usage. The model stops running when it 
reaches the maximum epoch, the maximum number of 
uses of the membrane division rules, or the maximum 
number of uses of the membrane dissolution rules.

 Di = V al_acci − V al_acci−1 (21)

Where: V al_acci is the current validation set accuracy, 
V al_acci−1 is the last validation set accuracy, and i is the 
number of rounds.

Table  4 shows the overall change process of Val_acc 
and D during the experiment, from which we can see 
that n has been increasing to 4 and then decreasing to 
3, and then increasing to 4 again and then remaining 
unchanged, which indicates that the number of SGEFA 
parallels being 4 is the best choice. However, the Val_acc 
of the model keeps changing when the value of n is 4. 
Also, the division of training into rounds of 20 epochs 
as a round may affect the determination of n. To demon-
strate the accuracy of n, we build different DDC-P sys-
tems based on different values of n appearing in Table 4, 
set the epoch to 100, and evaluate the performance of the 
DDC-P systems at different n.

Table  5 shows the experimental results of the DDC-P 
system with different n. From Table  5, we can see that 
the Val_acc for n of 4 is 98.76% and the test set accuracy 
(Test_acc) is 98.43%, which are both the highest among 
all four models. The validation set loss (Val_loss) is 
0.0341, and the test set loss (Test_loss) is 0.0476, which 
are both the lowest among the four models, which can 
show that an n value of 4 is the best choice. Meanwhile, 
Fig. 5 shows the confusion matrix of the DDC-P system 
on the test set for different values of n. The number of 
correct recognitions of Category 1 by the DDC-P system 
for n of 4 is second only to that of the DDC-P system for 
n value of 2. However, the number of correct recognitions 
for both Category 0 and Category 2 is the highest among 
all n values. Also, the total number of correct recogni-
tions is the highest of all n values, which also shows that 
n of 4 is the best choice. Therefore, it is feasible to use 
a fuzzy controller to control the triggering of membrane 
division rules and membrane dissolution rules to control 
the number of SGEFA parallels, and the DDC-P system 
can dynamically adjust the model structure according to 
the inputs to avoid model redundancy.

Table 4 The course of Val_acc and N in the experiment
Iteration Val_acc (%) n
0 0 1
1 76.01% 2
2 88.29% 3
3 96.06% 4
4 97.41% 4
5 95.50% 3
6 97.07% 4
7 98.20% 4
8 98.09% 4
9 97.97% 4
10 97.41% 4
11 97.86% 4
12 97.64% 4
13 97.86% 4
14 97.64% 4
15 98.31% 4

Table 5 Experimental results of the DDC-P system with different 
n
n Val_loss Val_acc (%) Test_loss Test_acc (%)
1 0.2320 91.10% 0.2121 92.35%
2 0.1297 96.28% 0.1493 94.71%
3 0.0786 97.52% 0.0817 96.85%
4 0.0341 98.76% 0.0476 98.43%

Fig. 5 Confusion matrix of the DDC-P system with different n
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Rblation experiment
We designed the attention module EFA in the DDC-P 
system, and to verify the effect of the EFA module on the 
model performance, we conducted ablation experiments 
with an epoch set to 100. Table 6 shows the experimental 
results of the ablation experiments. It can be seen that the 
use of the EFA module increases the accuracy by 1.36% 
and precision, recall, and F1, which indicates that the 
EFA module can improve the performance of the DDC-P 
system. Figure  6 shows the specific recognition results 
for the three categories of soybean leaves on the test set, 
and the use of the EFA module increases the number of 
Category 0 and Category 2 recognized correctly. There-
fore, using the EFA module can suppress the interference 
of the background on the model and improve the overall 
performance of the DDC-P system.

Comparison with different models
To validate the classification performance of the DDC-P 
system, we conducted comparison experiments between 
the DDC-P system and some classical models under the 
same training conditions, choosing DenseNet121 [36], 
ResNet101 [37], MobileNetV2. EfficientNetB0 [38], and 
InceptionV3 [39] models to compare with the overall per-
formance of the DDC-P system with the epoch set to 100. 
Table 7 shows the overall performance of the DDC-P sys-
tem with the comparison models on the test set.

Table  7 clearly shows that the accuracy, precision, 
recall, and F1 of the DDC-P system are 98.43%, 0.9870, 
0.9877, and 0.9874, respectively, which are optimal 
among all the models compared to the classical models 
mentioned above, suggesting that optimal experimental 
results are obtained for the DDC-P system. Simultane-
ously, the DDC-P system is only 1.41 M, possessing the 
least number of parameters. The results show that the 
DDC-P system has better performance in soybean leaf 
disease identification and can accurately identify soybean 
leaf diseases, while the parameter count of the DDC-P 
system is significantly lower and easier to implement on 
edge devices.

Figure  7 shows the confusion matrix between the 
DDC-P system and the comparison models on the test 
set. In Category 1, all models except MobileNetV2 
achieve 100% recognition. In Category 2, InceptionV3 
and the DDC-P system have an equal number of correct 
recognitions and are the highest among all models. On 
Category 0, the DDC-P system correctly recognized the 
highest number of all models. In addition, the DDC-P 
system had the highest overall number of correct identifi-
cations. This indicates that the DDC-P system is optimal 
for soybean leaf recognition.

Figure 8 shows the ROC curves of the DDC-P system 
with the comparison models, where the ROC curves 
with each of the three categories as positive classes are 
plotted. The DDC-P system obtains the largest AUC of 
0.9990, and EfficientNetB0 obtains the smallest AUC 
of 0.9808 when Category 0 is used as the positive class. 
When using Category 1 as the positive class, the AUC 
of all models except EfficientNetB0 is equal to 1. When 
Category 2 is used as a positive class, the DDC-P system 
has an AUC of 0.9989, and EfficientNetB0 has an AUC of 
0.9754, with the former being the largest and the latter 
the smallest of all models. Overall, it can be seen that the 
ROC curve of the DDC-P system is closer to the vertical 
axis, and the AUC is optimal among all models, indicat-
ing that the DDC-P system can better recognize soybean 
leaf diseases. Figure 9 shows the PR curves of the DDC-P 
system with the comparison models, which are also plot-
ted separately for each of the three categories as the 
positive class. In the figure, the DDC-P system obtains 
a maximum AP of 0.9991 when Category 0 is used as 

Table 6 Experimental results of ablation experiments on the test 
set
EFA Accuracy (%) Precision Recall F1
- 97.07% 0.9767 0.9746 0.9755
✓ 98.43% 0.9870 0.9877 0.9874

Table 7 Performance of the DDC-P system with the comparison 
models
Model Accuracy 

(%)
Precision Recall F1 Parame-

ter count 
(MB)

DenseNet121 96.85% 0.9733 0.9766 0.9748 28.87
ResNet101 96.29% 0.9692 0.9715 0.9703 166.77
MobileNetV2 88.75% 0.9353 0.8876 0.8993 11.14
EfficientNetB0 93.14% 0.9114 0.9497 0.9280 17.98
InceptionV3 95.84% 0.9585 0.9714 0.9643 87.21
DDC-P system 98.43% 0.9870 0.9877 0.9874 1.41

Fig. 6 Results of ablation experiments on three categories
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the positive class. When Category 1 is used as a positive 
class, only DenseNet121, ResNet101, and the DDC-P sys-
tem have an AP equal to 1. When using Category 2 as a 
positive class, the DDC-P system has an AP of 0.9979, the 
largest of all models. However, EfficientNetB0 obtains the 
smallest AP for all three PR curves. This indicates that 
the DDC-P system performs best among all models, and 
EfficientNetB0 performs worst.

Experiments on the Auburn soybean disease image 
dataset
The Auburn soybean disease image dataset [19] is a col-
lection of soybean leaf disease images, consisting of 8 cat-
egories and a total of 9,648 images. Table 8 provides the 
details of the Auburn soybean disease image dataset. The 
images are uniformly resized to 256 × 256 pixels and ran-
domly divided into training, testing, and validation sets 
in the ratio of 8:1:1.

Figure  10 shows the variation process of n in the 
DDC-P system on the dataset. Setting the epoch to 1000 

and the rounds to 30 results in an iteration of 34. The 
membrane division rule can be utilized up to a maximum 
of 10 times, while the membrane dissolution rule can be 
applied up to 5 times. It can be seen from the Fig. 10 that 
an n value of 5 is the optimal choice.

Figure  11 shows the confusion matrix of the DDC-P 
system compared to other models on the Auburn soy-
bean disease image dataset. It can be seen that the 
DDC-P system can correctly classify soybean leaf disease 
categories even on unbalanced samples. Table 9 presents 
the overall performance of the DDC-P system compared 
to other models on the Auburn soybean disease image 
dataset. The performance metrics of the DDC-P system 
are 94.40% accuracy, 0.94443 precision, 0.9411 recall, and 
0.9425 F1 score, which are the highest among all models. 
The experimental results demonstrate that the DDC-P 
system maintains excellent recognition ability even on 
samples with more complex and uneven backgrounds, 
indicating a stronger generalization capability.

Fig. 7 Confusion matrix of the DDC-P system with the comparison models
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Fig. 8 ROC curves for the DDC-P system and the comparison models
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Fig. 9 PR curves of the DDC-P system with comparison models
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Deployment on edge devices
Unitree Go1 is a high-mobility quadruped robot. To 
verify the feasibility of the DDC-P system in real-field 
operations, we deployed the DDC-P system with the 
comparison models on a Jetson Xavier NX controller 
with an internal block of 64G memory. Figure 12 shows a 
field scene where the DDC-P system was deployed on the 
Unitree Go1 and tested in a soybean field. Figures 13 and 
14 show the running time and FPS of the DDC-P system 
and the comparison models on Unitree Go1, respectively. 
The test set contains 889 images of soybean leaves, and 
the DDC-P system has a running time of 38.1s and an 
FPS of 23.3, with the former being the shortest among all 
models and the latter being the largest among all models. 
Therefore, the DDC-P system has faster real-time recog-
nition speed and better real-time performance.

Discussions
There are about 120 known soybean diseases in the 
world, 52 of which are found in China. The annual loss 
due to diseases is about 10%, and in severe cases, it can 

be up to 30%. Therefore, realizing rapid and accurate 
identification of soybean leaf diseases is of great research 
significance for both the quality and yield of soybeans. 
In this paper, a cell P system with membrane division 
and membrane dissolution rules (DDC-P system) was 
constructed to recognize soybean leaf diseases. 8883 
soybean leaf disease images were collected for experi-
ments. The experimental results show that the DDC-P 
system is a rapid and accurate soybean leaf disease rec-
ognition model that can be easily ported to edge devices. 
To further evaluate the recognition ability of the DDC-P 
system on soybean diseases, we compared the DDC-P 
system with the latest soybean disease recognition mod-
els. In Table 10, we list the model name, publication date, 
dataset, accuracy, and model parameter count. From 
Table 10, we can see that the accuracy rates of the listed 
models are more than 95%, which indicates that all of 
these models have excellent performance. Among them, 
the accuracy of the DDC-P system is the best among all 
models, and the model size is only a little bit larger than 
TFANet, which shows that the DDC-P system has obvi-
ous advantages in soybean leaf disease recognition.

In this study, the DDC-P system was implemented to 
recognize soybean leaf diseases, and according to the 
results of the confusion matrix, only healthy leaves were 
completely and correctly identified, but both diseases 
and insect pests were misclassified. The reasons for the 
misclassification of diseased and insect-infested leaves 
may be twofold; on the one hand, the early diseased and 
insect-infested leaves are not characterized, thus leading 
to model misclassification. On the other hand, for soy-
bean leaves, disease and insect pests sometimes occur 
together, and there are similarities between the charac-
teristics, which can also lead to model misclassification. 

Table 8 Distribution of Auburn soybean disease image dataset 
by category
Classes Train set Validation set Test set Total
Bacterial Blight (0) 386 49 49 484
Cercospora Leaf Blight (1) 1278 160 160 1598
Downey Mildew (2) 522 65 65 652
Frogeye Leaf Spot (3) 1232 154 154 1540
Healthy (4) 1306 163 163 1632
Potassium Deficiency (5) 826 104 104 1034
Soybean Rust (6) 1303 162 162 1627
Target Spot (7) 865 108 108 1081
Total 7718 965 965 9648

Fig. 10 The variation process of the value of n
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In this study, the DDC-P system was implemented to 
recognize soybean leaf diseases, and according to the 
results of the confusion matrix, only healthy leaves were 
completely and correctly identified, but both diseases 
and insect pests were misclassified. The reasons for the 
misclassification of diseased and insect-infested leaves 
may be twofold; on the one hand, the early diseased and 
insect-infested leaves are not characterized, thus leading 
to model misclassification. On the other hand, for soy-
bean leaves, disease and insect pests sometimes occur 
together, and there are similarities between the charac-
teristics, which can also lead to model misclassification.

Conclusion
In this paper, we propose a cell P system with membrane 
division and membrane dissolution rules (DDC-P sys-
tem) for rapid, accurate identification of soybean leaf 
diseases. In the DDC-P system, the SGEFA membrane 
effectively extracts features and reduces the number of 
model parameters, and the EFA membrane focuses on 
key features and suppresses the interference of back-
ground on the performance. Meanwhile, a fuzzy control-
ler is designed to control the division and dissolution of 
the SGEFA membrane to dynamically adjust the DDC-P 
system and avoid model redundancy. 8883 soybean leaf 

Table 9 Performance of the DDC-P system with the comparison 
models
Model Accuracy (%) Precision Recall F1
DenseNet121 91.40% 0.9299 0.9014 0.9133
ResNet101 81.87% 0.8599 0.8072 0.8143
MobileNetV2 82.38% 0.8429 0.8399 0.8275
EfficientNetB0 89.53% 0.8940 0.8821 0.8870
InceptionV3 89.84% 0.9292 0.8771 0.8944
DDC-P system 94.40% 0.9443 0.9411 0.9425

Fig. 12 Soybean field trial scene

 

Fig. 11 Confusion matrix of the DDC-P system
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disease images were collected for experiments, and the 
test set accuracy of the DDC-P system was 98.43%, F1 
was 0.9874, and the model size was 1.41  MB. On pub-
lic datasets with larger volumes of data, more complex 
contexts, and imbalanced samples, the DDC-P sys-
tem achieves an accuracy of 94.40% with an F1 score of 
0.9425. The average disease recognition time on the edge 
device was 0.042857s, and the FPS was 23.3.

The experimental results demonstrate that the DDC-P 
system exhibits excellent recognition capabilities on data-
sets with complex backgrounds and diverse disease types. 
Furthermore, it can achieve efficient real-time inference 
on edge devices. Additionally, the DDC-P system can 
dynamically adjust its model structure to accommodate 
different research tasks, making it highly applicable to 
other agricultural disease recognition scenarios. How-
ever, we also observe that the DDC-P system requires 
a more refined tuning strategy when applied to larger 
or more diverse agricultural datasets. Moreover, there 
is a certain degradation in recognition performance on 
images with obscure disease features. These aspects will 
be the focus of our future research efforts.
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