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Abstract 

Plant diseases adversely affect the agricultural sector by substantially affecting food security and limiting production. 
We introduce PlantCareNet, a novel, automated, end-to-end diagnostic system for plant diseases that can also offer 
interactive guidance to users. The system utilizes a dual mode strategy that integrates advanced deep learning 
algorithms for precise disease diagnosis with a knowledge-based framework guided by experts for preventive 
measures. The proposed architecture utilizes a convolutional neural network (CNN) to examine images of plant leaves, 
with the final block flattened and subsequently forwarded to Dense-100 and ultimately Dense-35 for the precise 
classification of various plant diseases. Subsequently, PlantCareNet promptly offers two types of recommendations: 
automated suggestions based on identified symptoms and expert-guided advice for personalized treatment. Both 
categories of recommendations are accessible immediately. The experimental findings indicate that PlantCareNet can 
accurately diagnose diseases in five well-known datasets, with an accuracy between 82% and 97%, outperforming 
notable models like Inception and ResNet in most cases. The overall approach demonstrates advancement by sur-
passing lightweight CNN models with 97% precision and an average inference time of 0.0021 s, hence offering farm-
ers precise and quick actions for remedy. This study emphasises a novel blend of artificial intelligence-driven recogni-
tion and expert consultation, which contributes to the advancement of sustainable agriculture practices.
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Introduction
The agricultural industry sustains 2.5 billion individuals 
as their principal source of income, providing a steady 
food supply, job possibilities, and enhanced global wealth 

[1]. It constitutes 29% of GDP and 65% of employment in 
emerging nations, especially in rural areas. The economic 
importance of agriculture is amplified by its support of 
ancillary sectors such as textiles, biofuels, and phar-
maceuticals. Since 1961, technical advancements have 
nearly doubled global agricultural output, enhancing 
access to a broader array of healthier foods [2, 3]. None-
theless, factors such as economic instability, violence, and 
climate change jeopardize food systems and exacerbate 
poverty [4]. By 2050, the global population is projected 
to reach 10 billion, necessitating sustainable agriculture 
to fulfill their needs. Agriculture is a fundamental pil-
lar of Bangladesh’s economy, employing over 40% of the 
workforce and contributing 14% to the nation’s GDP 
[5]. Despite challenges such as market fluctuations and 
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climate change, it remains essential for rural livelihoods 
and underpins key sectors that contribute to economic 
stability and growth [5, 6]. Sustainable methods and tech-
nology are essential for the sector’s growth and adaptabil-
ity to ensure food security and resilience.

To optimize agricultural productivity and ensure food 
security in Bangladesh, prompt diagnosis and treatment 
of plant diseases are crucial. Agricultural diseases in the 
region jeopardize the livelihoods of millions, potentially 
causing output losses of 20–30%, particularly in essential 
crops such as wheat and rice [7, 8]. Effective early iden-
tification and treatment can reduce crop losses by up to 
70%, aiding farmers in minimizing reliance on chemi-
cal pesticides, which constitute 25–30% of agricultural 
costs in Bangladesh and adversely affect the environ-
ment. Prompt actions are essential for maintaining 
crop health and enhancing resistance to climate-related 
stress, hence ensuring sustainable agricultural practices. 
Recent advancements underscore the need for AI-driven 
approaches in crop protection, which can improve the 
efficiency of disease prediction and treatment strategies, 
ultimately enabling more precise and eco-friendly solu-
tions for a resilient agricultural future [9].

Traditional manual measurement of plant traits is 
labor-intensive and inefficient, necessitating automated 
approaches for large-scale phenotyping [10]. Integrat-
ing advanced measurement techniques into diverse agri-
cultural landscapes helps address the challenges of fast 
and accurate identification, similar to the broader push 
towards automation and sustainability in Bangladesh’s 
agricultural transformation [11]. By facilitating early 
and precise identification through image analysis, arti-
ficial intelligence (AI) and machine learning technolo-
gies are essential to the management of plant diseases 
[12, 13]. These technologies enable real-time monitor-
ing and timely intervention, reduce the need for chemi-
cal pesticides, and enhance crop health and food security 
[14, 15]. Deep learning techniques, when combined with 
robust training datasets, facilitate precise trait analysis 
and decision-making in agricultural settings [16]. Plant 
disease diagnosis is transforming as a result of machine 
learning and deep learning replacing time-consuming 
and tedious manual diagnostic techniques [17]. In order 
to identify plant diseases, convolutional neural networks 
(CNNs), a top deep learning architecture, evaluate char-
acteristics including color, shape, and texture [18]. The 
accuracy of well-known CNN models like ResNet, Incep-
tion, and MobileNet frequently surpasses 97% [19–21]. 
However, environmental considerations including illumi-
nation, plant stage, and disease manifestation, as well as 
significant processing and data requirements, make these 
advancements difficult to implement in places like Bang-
ladesh [22, 23]. Efficiency and flexibility are crucial when 

developing models in locations with limited resources. In 
order to solve these issues and find effective and depend-
able ways to improve disease control and food security, 
this study assesses cutting-edge deep learning models 
within the context of Bangladesh’s agricultural industry 
[24].

The efficient application of machine learning and deep 
learning for plant disease identification in Bangladesh 
is hampered by issues including inadequate infrastruc-
ture and resources [13, 25]. Leveraging advanced tech-
nologies, a recommendation system can provide timely 
disease predictions and customized treatment strate-
gies [23, 26]. This approach can significantly enhance 
decision-making and support for farmers in managing 
plant health. This is illustrated in Fig. 1, highlighting the 
key benefits of using a plant disease recognition system. 
Using models trained on local disease data, the system 
evaluates crops that farmers scan with their phones or 
PCs. This early intervention strategy lowers pesticide use, 
increases production, and ensures food security while 
preventing the start of disease [15, 18]. Large language 
models (LLMs) contribute by analyzing vast amounts of 
textual data related to disease symptoms, historical crop 
health records, and expert knowledge, which further 
enhances the accuracy and reliability of disease diagno-
sis and treatment recommendations [27, 28]. Integrat-
ing data-driven approaches can help forecast crops and 
improve decision-making for farmers, bridging the gap 
between traditional agricultural practices and modern 
AI-driven solutions to enhance adaptability and effective-
ness in diverse environments like Bangladesh [29]. These 
technologies provide proactive alerts and customized 
treatment choices by combining historical disease data 
and weather forecasts, improving sustainable farming 
practices and assisting farmers in making a living [30].

This study aims to improve the detection and treat-
ment of plant diseases in Bangladesh via the application 
of machine learning and deep learning techniques. Inter-
ventions led by intelligent systems have demonstrated 
considerable promise in delivering customized solutions, 
promoting efficiency, and improving decision-making 
processes across several fields [31–34]. The aim is to 
enhance the speed and precision of illness diagnosis by 
developing models that utilize locally pertinent data, such 
as a tailored dataset for the Bangladeshi context. Tradi-
tional monitoring methods, such as machine vision, often 
struggle with real-time detection due to environmen-
tal factors, which can lead to discrepancies and reduced 
reliability in predicting produce quality [35]. By address-
ing these challenges, this research aims to decrease crop 
losses and enhance food security. The creation of a rec-
ommendation system that provides farmers with tailored 
information via mobile devices is an essential component 
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of this research. These insights provide timely interven-
tions and specific care recommendations by aiding farm-
ers in making educated decisions about crop health. This 
technique aims to enhance agricultural productivity by 
integrating environmental considerations and reducing 
reliance on chemical treatments, hence promoting sus-
tainable farming practices. The work has broader impli-
cations as it offers a scalable methodology that might 
inform national policy and foster data-driven agricultural 
practices, ultimately enhancing food security and sus-
tainable development in Bangladesh.

Figure  2, illustrates the full pipeline of the system, 
which integrates plant disease detection and a recom-
mendation module. By leveraging deep learning mod-
els trained on regionally relevant datasets, the system 
achieves high accuracy and effective identification of 
plant diseases in frequently occurring cases. The detec-
tion module processes user-uploaded images to classify 
crop conditions, followed by a recommendation system 
that provides tailored insights. In Reference Mode, the 
system delivers concise details about symptoms, pre-
vention, and cure, while the LLM Mode offers dynamic, 
context-specific recommendations based on advanced 
language models. This research endeavour seeks to pro-
vide a technology-driven strategy for early plant disease 
diagnosis and control, aiming to influence agricultural 

practices significantly, particularly in Bangladesh. In a 
nation where farming is central to the economy and food 
security, the ability to detect crop diseases with precision 
and speed empowers smallholder farmers to maximize 
resources and minimize losses. Addressing challenges 
like high pesticide costs and limited access to expert 
advice, this work paves the way for smarter, more effi-
cient agriculture.

The key contribution of this study includes: 

1.	 Comprehensive and Localized Dataset: A key contri-
bution of this research is the creation of a compre-
hensive dataset comprising over 30,000 annotated 
images, focusing on 35 plant diseases affecting criti-
cal crops such as rice, wheat, tomato, and eggplant. 
This dataset is unique in that it was created by merg-
ing data from local sources and worldwide databases, 
with a focus on conditions that mostly occur in Bang-
ladesh. By ensuring that the dataset accurately repre-
sents the agricultural reality of the area, this method 
makes it possible to create deep learning models that 
are both context-specific and useful for addressing 
the farming difficulties faced by Bangladesh.

2.	 PlantCareNet Architecture: We demonstrated an 
innovative CNN that was optimized for mobile 
devices and maintained a low computing footprint 

Fig. 1  Benefits of plant disease recognition system
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while achieving a high level of accuracy. This archi-
tecture makes deployment easier in contexts with 
limited resources, despite the fact that it sacrifices 
performance.

3.	 Smart Agriculture Application: The developed 
mobile application integrates PlantCareNet to pro-
vide real-time diagnosis of plant diseases and action-
able care recommendations, enabling farmers to 
effectively mitigate crop losses. This research sig-
nificantly advances sustainable agriculture and the 
democratization of AI-based plant disease manage-
ment by highlighting scalability and practical imple-
mentation.

Related works
Numerous researches have addressed important issues 
in agriculture by advancing the area of plant disease clas-
sification through the use of deep learning and image 
processing techniques. CNNs, K-means clustering, 
and histogram analysis were used by Harakannanavar 
et  al. [36] to classify tomato diseases, with an astound-
ing 99.6% accuracy rate. However, the actual usefulness 
of their technology is limited due to its dependence on 

high-quality photos and resource-intensive processing. 
On cauliflower datasets, Kanna et  al. [37] investigated 
transfer learning models, such as EfficientNetB1, and 
achieved an impressive validation accuracy of 99.90%; 
nevertheless, issues like tiny datasets and high comput-
ing needs still exist. Similar to this, Pandian et  al. [38] 
observed challenges with dataset quality and hyperpa-
rameter optimisation in multi-GPU systems, but they 
also presented a 14-layer DCNN using sophisticated data 
augmentation techniques, attaining 99.95% accuracy. 
Hossain et al. [39] designed an optimized model utilizing 
the transformer architecture, achieving an accuracy of 
99.75% in identifying mango leaf diseases. Using Incep-
tion ResNet V2 and Inception V3 models, Saeed et  al. 
[40] detected tomato leaf disease with 99.22% accuracy, 
highlighting the need of different datasets to improve 
generalisability. Islam et al. [41] used ResNet-50 to obtain 
98.98% accuracy on the PlantVillage dataset; neverthe-
less, real-world scalability and limited dataset diversity 
are still issues. Bhuiyan et  al. [42] developed Banana-
SqueezeNet to identify three prominent banana leaf dis-
eases using the BananaLSD dataset [43] with an accuracy 
of 96.25%. With a 98.49% accuracy rate, Trivedi et  al. 
[44] developed a CNN-based model for tomato disease 

Fig. 2  Overall Workflow Diagram of the Recommendation System
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detection, but they also emphasised the necessity of scal-
ability testing. Rashid et  al. [45] combined CNNs and 
YOLOv5 for the diagnosis of potato disease, attaining 
99.75% accuracy; nevertheless, scalability and regional 
applicability across crops are still difficult. The DTComp 
CNN model using class decomposition approaches was 
lastly introduced by Gulame et al. [46]. It achieved 98.30% 
accuracy and was compatible with real-time systems, but 
it was limited by biases in the dataset and problems with 
image quality. Together, these works show a great deal of 
advancement in the use of deep learning for plant disease 
diagnosis while pointing out important areas for further 
study, such as computational efficiency, real-world scal-
ability, and dataset variety.

The study investigates the application of machine 
learning and artificial intelligence technologies for sug-
gestion creation. Using Random Forest for crop selection 
and CNN for disease diagnosis, Diwakar et al. [47] devel-
oped an online application that smoothly integrates crop 
recommendation and plant disease detection. Though it 
emphasises the need for larger datasets and more flex-
ibility across a variety of crops, this real-time, data-driven 
approach gives farmers practical information. Kumar 
et al. [48] presented an open-source online platform that 
includes disease forecasts and an interactive news feed 
in addition to conventional crop and fertiliser advice. By 
using interpretability approaches for transparent disease 
identification, this technology not only improves sustain-
ability but also productivity.

Choudhary et  al.’s study [49] concentrated on using 
economic and environmental analysis to optimise crop 
choices. This method solves issues related to food secu-
rity while also increasing yields. They can provide farm-
ers with early treatments since their approach includes 
a diagnostic component for plant diseases. To identify 
plant diseases, Suma et  al. [50] used image processing 
techniques. There were five thousand photos in the data-
set. They employed convolutional and semi-supervised 
learning techniques to create effective solutions that 
might boost agricultural productivity. To give customised 
solutions, Isinkaye et al. [51] created a smartphone-based 
system that integrates a content-based filtering algo-
rithm. CNN, ANN, and KNN are also used by the sys-
tem to accurately diagnose illnesses and offer treatments. 
Patil et al. [52] achieved an astounding 97.53 percent dis-
ease detection accuracy by successfully using artificial 
intelligence (AI) in agriculture via the use of Deep Con-
volutional Neural Network (CNN) models like Sequential 
and VGG-16. Before generating suggestions, its content-
based filtering approach considers things like location, 
season, and climate to produce personalised crop recom-
mendations. To tackle the issue of connection, Omara 
et  al. [53] developed a field-based recommendation 

system. This technology provides advisory services and 
real-time input on crop disease detection. It does this by 
combining methods from natural language processing 
and machine learning.

Arvind et al. developed an explainable AI pipeline [54]. 
This pipeline has good F1 score accuracy and empha-
sised automated diagnosis. For the pipeline, EfficientNet 
B5 and transfer learning on tomato leaves were utilised. 
Users may upload photographs online or via mobile 
devices to this technology to rapidly and reliably diag-
nose ailments and provide recommendations. These 
studies improve disease detection, crop recommenda-
tions, and decision-making, boosting agricultural pro-
ductivity. Their downsides include the need for larger 
datasets, scalability, and real-time application in agricul-
ture. These disadvantages imply some areas require addi-
tional research and development.

This paper presents an advanced method for identi-
fying plant diseases that addresses computational and 
scalability challenges. It enables swift intervention and 
effective illness management by integrating AI-gener-
ated recommendations with real-time data analysis. This 
approach provides pragmatic recommendations tailored 
to diverse environmental conditions, enhancing agricul-
tural productivity and ensuring food security.

Materials and methods
By developing a real-time disease monitoring system, 
this research aims to build sustainable farming practices. 
Through a straightforward smartphone application, the 
device will give farmers and practitioners instant dis-
ease recommendations. The first goal of this effort is to 
create a dataset on agricultural diseases that is mostly 
related to crops grown in Bangladesh. Subsequently, we 
will develop a disease classification model that is as light-
weight as possible, aiming for deployment in a mobile 
application. Ultimately, we will develop a system capable 
of promptly diagnosing a plant’s state.

Data collection
The initial phase of this research was the compilation of 
a dataset pertinent to the categorization of plant diseases 
affecting significant crops in Bangladesh. The data was 
obtained from four esteemed public databases: Plant-
Village [55], VegNet: Cauliflower Disease [56], the New 
Bangladeshi Crop Disease dataset [57], and the Eggplant 
Disease Recognition dataset [58]. The PlantVillage collec-
tion has 14 crop varieties and 38 categories, with images 
of both healthy and damaged leaves. Essential crops per-
tinent to Bangladesh include rice, tomato, potato, and 
maize, which are crucial to the nation’s agriculture. The 
information include critical diseases like bacterial spots, 
blights, molds, and viruses. VegNet: Comprises one crop 
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(cauliflower) with four categories, addressing illnesses 
such as black rot, downy mildew, and bacterial spot, in 
addition to a healthy category. The New Bangladeshi 
Crop Disease Dataset includes healthy specimens and 
include diseases such as brown spot, blast, late blight, and 
leaf curl virus across four crops (rice, tomato, potato, and 
maize), including over 12 categories. Eggplant Disease 
Recognition Dataset: Comprises a single crop (eggplant) 
categorized into six classifications, including bacterial 
wilt, fruit rot, phomopsis blight, and a healthy category.

During the data collecting process, we prioritized four 
essential criteria to guarantee that the dataset correctly 
represents Bangladesh’s agricultural environment. Rice, 
maize, wheat, potato, tomato, cauliflower, and eggplant 
are seven widely farmed crops in Bangladesh that hold 
considerable economic significance. The main aim of 
this study was to highlight the cultivation of particular 
crops that are strategically significant for focused agricul-
tural enhancements. The purpose of this technique was 
to guarantee the dataset’s applicability for agricultural 
researchers and local farmers. Secondly, to augment the 
dataset’s pertinence to the unique agricultural difficulties 
in Bangladesh, we incorporated 35 disease classifications 
based on their occurrence and effect within the region’s 
distinctive climate and environment. To guarantee effec-
tive model transfer to real-world situations, we selected 
photographs that depict diverse phases of disease devel-
opment, environmental circumstances, and viewpoints 
(from close-ups to expansive vistas). Ultimately, we main-
tained a limited number of pictures per class to reduce 
any bias in the model, despite some disease categories 
being underrepresented in the original datasets. There-
fore, the paradigm would be applicable to all diseases.

The sample images of each of the 35 classes are shown 
in Fig. 3. The collection consists of 30,578 images of these 
crops captured under various conditions and disease 
stages. Specifically, there are 643 images of rice across 
four categories, 3,852 images of maize across four catego-
ries, 3,780 images of wheat across three categories, 2,152 
images of potatoes across three categories, 18,146 images 
of tomatoes across ten categories, 640 images of cauli-
flower across four categories, and 1,374 images across 
seven categories. Table 1 illustrates the quantity of classes 
and the aggregate number of images inside each crop 
class. The dataset highlights specific crop production 
and addresses the unique agricultural issues encountered 
in Bangladesh, designed to support local farmers and 
agricultural research. We ensured that the photographs 
depicted a variety of environmental contexts, encompass-
ing both close-ups and broader landscape vistas, as well 
as various stages of the disease’s progression, from first 
symptoms to advanced stages. Furthermore, we ensured 
that each class had a minimum of 100 images to mitigate 

bias and ensure the model’s applicability across diverse 
agricultural contexts.

Data preprocessing
Following data collection, we meticulously preprocessed 
the dataset to ensure its suitability for plant disease clas-
sification within a Bangladeshi agricultural framework. 
Initially, all images were resized to 640× 640 pixels to 
standardize dimensions across different sources, ensur-
ing uniformity and facilitating seamless integration into 
the dataset. Prior to feeding the images into the deep 
learning models, they were further resized to 75× 75 
pixels to align with the input requirements of our cus-
tom model, optimizing computational efficiency without 
compromising critical visual features. Furthermore, pixel 
intensity values were normalized to a [0,1] range to miti-
gate illumination variations and stabilize model training, 
facilitating more effective feature extraction and improv-
ing overall model generalization. This normalization pro-
cess not only accelerates convergence during training but 
also enhances the model’s robustness to varying lighting 
conditions, ensuring more consistent predictions across 
diverse real-world scenarios.

To enhance the model’s resilience, data augmentation 
was systematically applied across all ailment categories. 
The used approaches included random rotations with 
a tolerance of ±25◦ , alterations in width and height of 
±10%, shear transformations of 0.2, zoom modifications 
of ±20%, and horizontal flips (Fig.  4). These enhance-
ments improve the model’s ability to generalize across 
various agricultural settings by replicating diverse real-
world scenarios, including changes in size, orientation, 
and perspective. Real-time augmentation was applied 
during training, where each batch was augmented 
dynamically in every epoch. This method ensures that no 
additional physical images are added to the dataset while 
creating diverse and varied images in each epoch, which 
strengthens the model’s ability to handle different varia-
tions in the data.

Finally, we divided the dataset into training and test 
sets 85/15. This let us train the model with the most data 
while preserving a strong evaluation representation. This 
division allows extensive validation of the model, which is 
trained using a large dataset that correctly replicates real-
world settings. After these preparations, the curated data 
will be ready for reliable, region-specific plant disease 
categorization for various Bangladeshi crops.

Model selection
In this research, we introduce PlantCareNet, a convo-
lutional neural network (CNN) specifically designed to 
properly and quickly categorize plant disease in Bangla-
deshi agricultural crops. The proposed model is tailored 
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for mobile devices, enabling seamless accessibility for 
local farmers and agricultural professionals, as it strikes 
a compromise between diagnostic precision and comput-
ing efficiency. The network employs Rectified Linear Unit 
(ReLU) activation functions across many convolutional 
layers to provide effective feature extraction using non-
linear transformations. Batch normalization used after 
each convolutional layer during training, ensures stability 
and accelerates convergence. Max-pooling layers provide 
reduced processing complexity via dimensionality reduc-
tion while maintaining essential attributes. The use of 
dropout layers, which mitigate overfitting, enhances the 

model’s capacity to generalize across many situations. 
The final softmax layer of the research enables multi-
class categorization across 35 disease categories, essential 
for targeted agricultural applications. The model archi-
tecture of PlantCareNet is depicted in Fig. 5.

We placed a high priority on striking a compromise 
between classification accuracy and computational 
efficiency when developing PlantCareNet, especially 
in order to enable real-time performance on mobile 
devices with limited resources. Without imposing 
additional complexity, the design makes use of con-
ventional multi-scale convolutional layers to efficiently 

Table 1  Overview of the Combined Crop Disease Dataset

Name Classes Healthy/Disease Classes No. of Images Total Images

Cauliflower 4 1. Bacterial spot rot 168 640

2. Black Rot 102

3. Downy Mildew 169

4. Healthy 201

Corn 4 5. Cercospora leaf spot(Gray leaf spot) 513 3852

6. Common rust 1192

7. Healthy 1162

8. Northern Leaf Blight 985

Eggplant 7 9. Healthy Leaf 200 1334

10. Insect Pest Disease 199

11. Leaf Spot Disease 199

12. Mosaic Virus Disease 190

13. Small Leaf Disease 194

14. White Mold Disease 195

15. Wilt Disease 197

Potato 3 16. Early blight 1000 2152

17. Healthy 152

18. Late blight 1000

Rice 4 19. Bacterial leaf blight 132 634

20. Brown spot 107

21. Healthy 267

22. Leaf smut 128

Tomato 10 23. Bacterial spot 2127 18146

24. Early blight 1000

25. Healthy 1585

26. Late blight 1901

27. Leaf Mold 952

28. mosaic virus 373

29. Septoria leaf spot 1771

30. Spider mites Two-spotted spider mite 1676

31. Target Spot 1404

32. Yellow Leaf Curl Virus 5357

Wheat 3 33. Brown Rust 1128 3780

34. Healthy 1496

35. Yellow Rust 1156
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Fig. 3  Sample Images Representing Each Class in the Dataset
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capture minute differences in plant disease symptoms. 
By minimizing the computational complexity linked 
to more intricate methods like layer-wise convolu-
tions, this design decision guaranteed reliable feature 
extraction. Rather, by combining methods like batch 
normalization, dropout, and max-pooling, we were 

able to improve model generalization and stability 
across a variety of datasets while keeping the structure 
small and portable. In the end, this strategy allowed 
PlantCareNet to succeed in providing effective disease 
detection and high classification accuracy for practical 
agricultural applications.

Fig. 4  Data Augmentation

Fig. 5  The proposed PlantCareNet architecture
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The architecture is designed for the highest possible 
effectiveness, ensuring the model operates in real-time 
environments, which is crucial for disease detection 
applications dependent on mobile devices. To be sure 
of PlantCareNet’s effectiveness, we evaluated it against 
some popular deep learning models along with Incep-
tionV3 and ResNet50, which are both renowned for their 
superior performance on image classification tasks. We 
used standard evaluation metrics, including accuracy, 
precision, recall, and F1-score, to evaluate the model’s 
efficacy. The Results section indicates that PlantCareNet 
excels in plant disease classification, particularly on 
resource-constrained mobile devices.

Model training
To maximise the performance and guarantee generalisa-
tion over a wide range of disease categories, the model 
was trained using a set of carefully selected hyperparam-
eters. To promote steady convergence and enable the 
model to accurately capture the intricate characteris-
tics of plant diseases without overfitting, a learning rate 
of 0.0001 was used. In order to ensure efficient updates 
to the model weights and minimise memory use during 
training, the batch size was chosen at 32 to strike a com-
promise between computational efficiency and model 
stability. Categorical cross-entropy was used as the loss 
function, as it is well-suited for multi-class classification 
problems, allowing the model to optimize predictions 
across all disease classes simultaneously.

To ensure consistency and fair comparability across 
models, all models were trained for 250 epochs. This 
duration was selected to provide sufficient time for the 
network to learn complex patterns and generalize effec-
tively across diverse disease categories. By standard-
izing the number of epochs, we minimized potential 
discrepancies arising from varying training durations 
and ensured uniform experimental conditions. Addition-
ally, a checkpointing system was employed to save model 
states at regular intervals, allowing the selection of the 
best-performing model based on validation metrics. This 

approach enhanced model robustness, ensured repro-
ducibility, and facilitated more reliable performance 
evaluations.

The hyperparameter selections and their justifications 
for enhancing the model’s performance are compiled in 
Table  2. In order to create an efficient architecture that 
was suited to the dataset and job requirements, every 
parameter was meticulously chosen through extensive 
testing, striking a balance between accuracy and compu-
tational economy.

The model was trained and assessed on a Kaggle note-
book environment, with two NVIDIA Tesla T4 GPUs 
(each with 16 GB of RAM) used to accelerate the training 
process using parallel processing. When combined with 
the Intel Xeon CPU architecture, the GPUs allowed for 
effective processing of massive amounts of visual data. 
The system was set up using CUDA 12.6 to guarantee the 
best GPU acceleration and performance throughout the 
training and inference phases, while TensorFlow 2.17 and 
Keras were utilized for model creation. Consistency in 
performance evaluation was ensured by measuring infer-
ence time on a batch size of 32 with the model deployed 
in the same hardware configuration. The average infer-
ence time per sample was calculated to assess model 
efficiency, and results were obtained using this environ-
ment, providing a reliable and reproducible analysis of 
the model’s real-time performance in plant disease clas-
sification tasks.

Model evaluation and visualisation
The suggested model, PlantCareNet, was carefully evalu-
ated to confirm its usefulness in real-world plant disease 
categorisation. Its performance on the validation set was 
evaluated using key measures including accuracy, preci-
sion, recall, and F1-score, which gave a thorough picture 
of its categorisation skills as shown in Fig.  6. In order 
to assess the model’s classification accuracy and iden-
tify potential misclassifications, a confusion matrix was 
produced.

Table 2  Overview of Hyperparameter Choices

Parameter Reasons Trials Done Best Choice

Conv filters Capture various features 32,64,128 All in different stage

Activation Introduce non-linearity ReLU, Leaky ReLU RelU

Pooling Reduce spatial dimensions 2x2,3x3 Both required

Dropout Rate Prevent overfitting 0.2, 0.25, 0.5 0.25 and 0.5

Batch Norm Stabilize training, speed up convergence Before/After Convolution After

Learning Rate Control the size of weight updates 0.001, 0.0005, 0.0001, 0.05, 0.01 0.0001

Epochs Ensure enough training time to learn 50, 100, 150, 250 250
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We visualised training and validation loss and accu-
racy across epochs to track training progress, expos-
ing convergence tendencies and the effects of methods 
like batch normalisation and dropout. These revelations 
were crucial to comprehending the stability and optimi-
sation process of the model. PlantCareNet was further 
validated by comparing it to cutting-edge architectures 
like as InceptionV3, ResNet50, and MobileNet. Using the 
same dataset and assessment methodology, the compari-
sons revealed that PlantCareNet regularly outperformed 
or matched these models, indicating its utility for actual 
agricultural applications.

The model’s decision-making process was visually 
explained using Grad-CAM (Gradient-weighted Class 
Activation Mapping) in Fig. 7, which was used to further 

confirm PlantCareNet’s predictions. By emphasising the 
areas of the plant photos that the machine concentrated 
on during classification, these visualisations improved 
predictability and increased confidence in the results. 
Grad-CAM findings demonstrated the model’s capac-
ity to make significant and comprehensible judgements 
by confirming that its predictions match disease-specific 
characteristics. These evaluations validate PlantCareNet 
as a reliable, interpretable, and scalable tool for accu-
rate plant disease diagnosis and practical agricultural 
applications.

Mobile application development
The mobile application for identifying and recommend-
ing plant diseases is developed in Kotlin [59] specifically 

Fig. 6  Performance Metrics for the Classification Model

Fig. 7  Exploring the Dimensions of GradCAM
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for the Android platform. The objective is to furnish 
farmers and agricultural specialists with an intuitive 
interface for real-time disease diagnosis and actionable 
insights.

The app assists in identifying plant diseases by offering 
concentrated information on symptoms, prevention, and 
treatment, therefore empowering users to make educated 
decisions on crop health management. Upon launching 
the app, users can select a crop type (e.g., rice, potato, 
or tomato) from a predefined list and upload an image 
of a plant directly from their mobile device. A RESTful 
API [60] accepts this input and utilizes the PlantCareNet 
model housed on Roboflow to analyze the image. The 
method yields the disease name, confidence score, and 
relevant recommendations following the classification 
of the ailment. In cases where the model’s classification 
confidence is low or when it encounters a disease outside 
the predefined 35 categories, the app flags the result as 
“unknown”. This feature ensures that users are informed 
of uncertainties in the classification, maintaining trans-
parency and preventing misclassifications.

The program additionally lets users upload multiple 
photos of the same plant to increase classification accu-
racy. With the ability to analyze many photographs and 
decide the disease diagnosis based on a majority vote 
across all uploaded images, this function helps lessen 
the impact of inadequate lighting or poor image quality. 
The program uses each prediction’s confidence score to 
determine which class has the highest confidence as the 
outcome if the votes from the classes are tied. By com-
bining data from several sources, this feature makes sure 
that the system can still produce a diagnosis that is more 
accurate and trustworthy even if one or more of the pho-
tos are of poor quality. Users can easily understand and 
utilize the results, as the outcomes are presented clearly. 
The workflow diagram of the developed app, shown in 
Fig. 8, illustrates the entire process from start to finish.

To guarantee optimum performance, quick reaction 
times, and accurate analysis, the calculations are now 
carried out on the cloud. This cloud-based architecture 
has the capacity to accommodate complicated mod-
els like PlantCareNet while still providing a seamless 
and responsive user experience. The system leverages a 
diverse training dataset to ensure reliable performance 
across varying image conditions, minimizing the need 
for explicit user guidance during image capture. Given 
that our primary target users are farmers and agricultural 
professionals in places with varying technical access, the 
system has been developed to work with a broad range 
of Android smartphones, including those with limited 
processing capability. This assures that users can access 
the system reliably, even on low-end devices, and reduces 
adoption obstacles.

To ensure broad accessibility and seamless user expe-
rience across various devices, the mobile application 
for plant disease identification and recommendations 
was designed to support Android versions ranging from 
Android 7 (Nougat) to Android 15 in order to guarantee 
wide accessibility and a smooth user experience across 
multiple devices. This range was selected to guarantee 
compatibility with both older and more recent smart-
phones, enabling users with varying device capabilities 
to make efficient use of the application. Additionally, a 
OnePlus 7T running Android 12 with 8 GB of RAM was 
used to test the mobile application’s performance. We 
were able to assess and validate the application’s correct-
ness, stability, and responsiveness in real-world use cases 
thanks to this testing environment. By choosing this 
gadget, we made sure the system could support smart-
phones ranging from the mid-range to the high-range, 
further guaranteeing that a wide variety of users can 
access the application without performance issues.

The application enables efficient data exchange by 
integrating an internet backend that allows real-time 
server connectivity. To provide accessibility for users 
with varying levels of technical proficiency, it employs a 
user-friendly design, explicit instructions, and intuitive 
navigation. The interface serves as a reliable instrument 
for real agricultural scenarios, designed for simplicity 
while ensuring rapid response times and accurate out-
comes. The program has undergone testing in several 
agricultural environments to simulate field conditions 
and confirm its practical applicability. This ensures its 
durability and adaptability, even in challenging environ-
ments. The program is meant to be expandable, allowing 
it to accommodate new crop varieties and disease clas-
sifications in future updates, so maintaining its relevance 
as agricultural issues evolve.

Recommendation system
Figure  9 shows the recommendation system for disease 
management, outlining the steps to provide action-
able suggestions to users. The capacity to provide farm-
ers and agricultural specialists with actionable advice 
for efficiently controlling plant diseases is a crucial part 
of this system. It functions in two separate modes, LLM 
Mode and Reference Mode (Ref Mode), both of which is 
designed to accommodate varying degrees of interactiv-
ity and information richness. The system provides clear, 
preconfigured suggestions in Ref Mode, including critical 
information about illness signs, preventative methods, 
and treatment alternatives.These guidelines are founded 
on specialist knowledge, guaranteeing their conform-
ity with generally recognized agricultural methods in 
Bangladesh.
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Ref Mode provides customers with trustworthy, con-
text-aware advice without needing further user engage-
ment because the suggestions are based on a well 
maintained database of ailments that are often observed 
in the area. When a user uploads an image of a crop and 
specifies its name, the PlantCareNet model identifies the 
disease, and the system uses this information to retrieve 
tailored recommendations. These recommendations 
center on doable disease management strategies, such 
as identifying symptoms, prescribing appropriate treat-
ments, and implementing locally-specific prevention 

measures. Ref Mode’s main goal is to provide farmers and 
agricultural specialists with fast access to expert-based, 
actionable insights that guarantee efficient disease man-
agement with little effort.

LLM Mode utilizes OpenAI’s GPT to provide dynamic 
and thorough suggestions, leveraging its proven accu-
racy, ease of integration, and robust performance in 
generating relevant, domain-specific recommendations. 
Its pre-trained model offered a reliable, computationally 
efficient solution, ensuring high-quality outputs while 
adhering to privacy and security standards. Following 

Fig. 8  The workflow diagram of the developed APP
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disease identification, the PlantCareNet model sends per-
tinent information to the GPT API, including crop type, 
disease name, and classification confidence. Following a 
brief overview of the diseases, the system provides com-
prehensive, situation-specific advice on symptoms, pre-
ventative measures, and available treatments. This mode 
provides complex and locally appropriate answers for a 
variety of situations. For example, if the system detects 
a fungal disease in rice, Ref Mode might suggest general 
fungicide use and irrigation adjustments, while LLM 
Mode would provide a more comprehensive description, 
including specific fungicides, their application methods, 
and timing recommendations tailored to local condi-
tions. Connecting with people in LLM Mode for quick 

input will allow the system to dynamically improve its 
ideas. This technology revolutionizes plant disease man-
agement by combining dynamic flexibility with static reli-
ability for precise, accessible, and efficient solutions.

Results
The findings and analysis are conducted on individual 
datasets first, followed by customized datasets, including 
a comparative study with the latest models.

Performance on individual datasets
The performance of PlantCareNet in comparison to 
Inception and ResNet across five datasets is shown in 
Table  3, indicating its adaptability and dependability in 

Fig. 9  Recommendation System for Disease Management

Table 3  Performance metrics of different models on various datasets

Dataset Models Acc. Loss Prec. F1 Recall

Eggplant Disease Recognition Dataset [58] Inception 0.73 0.17 0.77 0.72 0.68

Resnet 0.86 0.11 0.87 0.86 0.85
PlantCareNet 0.85 0.12 0.86 0.85 0.85

New Bangladeshi Crop Disease Dataset [57] Inception 0.81 0.09 0.81 0.79 0.78

Resnet 0.73 0.13 0.72 0.71 0.7

PlantCareNet 0.83 0.08 0.84 0.84 0.83
VegNet: A dataset of cauliflower images [56] Inception 0.86 0.12 0.9 0.9 0.88

Resnet 0.8 0.2 0.79 0.78 0.81

PlantCareNet 0.82 0.18 0.71 0.71 0.7

Plant Village Dataset [55] Inception 0.88 0.04 0.89 0.88 0.87

Resnet 0.92 0.03 0.92 0.92 0.92

PlantCareNet 0.94 0.03 0.94 0.94 0.94
VegNet: Vegetable Dataset with quality [61] Inception 0.87 0.12 0.88 0.87 0.87

Resnet 0.8 0.22 0.8 0.81 0.79

PlantCareNet 0.96 0.05 0.96 0.96 0.96
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the categorisation of plant diseases. By presenting the 
highest accuracy (Acc.), precision (Prec.), recall, and F1 
score, as well as the lowest loss, the bold values highlight 
the best outcomes for each dataset and highlight the 
models’ optimal performance in each aspect. With the 
best accuracy (94%) and F1 Score (0.94) on the renowned 
PlantVillage dataset, PlantCareNet fared better than both 
ResNet and Inception. Likewise, it demonstrated its resil-
ience in managing quality-related variability with an out-
standing accuracy of 96% on the VegNet Quality dataset, 
significantly outperforming ResNet (80%) and Inception 
(87%).

PlantCareNet continuously excelled or nearly equalled 
its rivals in region-specific datasets. For example, it main-
tained the lowest loss (0.08) and obtained greater accu-
racy (83%) on the New Bangladeshi Crop Disease dataset, 
demonstrating its excellent optimisation for regional 
agricultural concerns. Its performance (85% accuracy) 
on the Eggplant Disease dataset outperformed Inception 
(73%), roughly matching ResNet’s 86% performance. On 
the VegNet Cauliflower dataset, however, PlantCareNet 
performed mediocrely, falling short of Inception in terms 
of accuracy and precision, suggesting possible areas for 
improvement. These findings highlight PlantCareNet’s 
generalisability across a variety of datasets and point out 
certain areas that require further development in more 
challenging situations.

Performance on the custom dataset
After undergoing a thorough evaluation on a specially 
created dataset pertaining to Bangladeshi crops and 
related diseases, the suggested PlantCareNet model 
demonstrated remarkable performance metrics, includ-
ing 97% accuracy, 97% precision, 97% recall, and a 97% 
F1-score. These outcomes highlight the model’s resilience 
and efficiency in tasks involving the classification of plant 
diseases. The Fig.  10 presents the model’s performance 
metrics across different training phases on the custom 
dataset. Figure  10a shows the model’s accuracy over 
epochs, highlighting its learning progress. Figure 10b dis-
plays the loss trajectory, showing how the model reduces 
error as training progresses. Figure  10c illustrates the 
precision performance, while Fig.  10d shows the recall 
metrics, both reflecting the model’s capability in cor-
rectly identifying plant diseases

The model successfully handled changes in image 
quality, environmental factors, and data heterogene-
ity, exhibiting high generalization across a variety of 
input situations. Targeted data augmentation techniques 
improved its steady performance, even when there was 
a class imbalance. The confusion matrix, which displays 
accurate discrimination between disease classes, includ-
ing those with small visual changes, further demonstrates 
the model’s dependability. This demonstrates how well-
suited PlantCareNet is for practical agricultural uses.

Fig. 10  Performance Evaluation of the Proposed Model on Custom Dataset
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Performance evaluation
The performance evaluation of our model, which clas-
sifies 35 different plant diseases across various crops, 
shows its strong capabilities, as highlighted in Table  4. 
The model achieved outstanding results, with per-
fect F1-scores and MCC values of 1.00 for key diseases 
such as Corn Common Rust, Tomato Yellow Leaf Curl 
Virus,, demonstrating its ability to accurately identify 
both common and visually diverse diseases. The model 
also performed well across many other diseases, such 
as Potato Early Blight (F1 = 1.00) and Tomato Septoria 
Leaf Spot (F1 = 0.98), showing its strong generalization 

ability. However, some diseases, like Rice Brown Spot (F1 
= 0.67), Rice Leaf Smut (F1 = 0.67), and Eggplant Insect 
Pest Disease (F1 = 0.77), proved more challenging due to 
their similarities with other diseases and limited training 
data. Despite these difficulties, the model’s overall perfor-
mance represents a significant improvement over tradi-
tional methods, particularly in handling more complex 
and visually similar diseases. This evaluation suggests 
that there is still room for further improvement, espe-
cially in boosting accuracy for these more challenging 
disease categories.

Table 4  Performance metrics for all 35 classes

Crop Class Prec. Rcl. Spec. F1-S. MCC

Cauliflower Bacterial spot rot 1.00 0.93 0.98 0.96 0.93

Black Rot 1.00 0.88 0.95 0.93 0.90

Downy Mildew 0.96 0.92 0.95 0.94 0.91

Healthy 0.96 1.00 1.00 0.98 0.96

Corn Cercospora leaf spot 0.96 0.94 0.98 0.95 0.95

Common rust 0.99 1.00 1.00 1.00 1.00

Northern Leaf Blight 0.97 0.98 0.99 0.98 0.97

Healthy 1.00 1.00 1.00 1.00 0.98

EggPlant Healthy Leaf 0.77 0.84 0.89 0.81 0.76

Insect Pest Disease 0.68 0.88 0.91 0.77 0.75

Leaf Spot Disease 0.89 0.68 0.93 0.78 0.74

Mosaic Virus Disease 0.75 0.83 0.95 0.79 0.72

Small Leaf Disease 0.95 0.68 0.97 0.79 0.74

White Mold Disease 0.88 0.88 0.98 0.88 0.79

Wilt Disease 0.90 0.97 1.00 0.93 0.93

Potato Early blight 0.99 1.00 1.00 1.00 0.99

Late blight 0.99 1.00 1.00 1.00 0.97

Healthy 0.96 1.00 1.00 0.98 0.94

Rice Bacterial leaf blight 0.71 1.00 0.98 0.83 0.95

Brown spot 1.00 0.50 0.91 0.67 0.71

Healthy 1.00 0.97 1.00 0.99 0.99

Leaf smut 0.50 1.00 0.95 0.67 0.71

Tomato Bacterial spot 0.99 0.97 0.97 0.98 0.94

Early blight 0.87 0.96 0.98 0.91 0.96

Late blight 0.97 0.97 0.99 0.97 0.94

Leaf Mold 0.99 0.97 1.00 0.98 0.95

Septoria leaf spot 1.00 0.97 0.96 0.98 0.98

Spider mites 0.97 0.98 0.99 0.97 0.88

Target Spot 0.94 0.9 0.99 0.92 0.77

Yellow Leaf Curl Virus 1.00 1.00 1.00 1.00 1.00

Healthy 0.94 1.00 0.98 0.97 0.84

Mosaic virus 1.00 0.98 1.00 0.99 0.97

Wheat Brown Rust 0.99 0.97 0.98 0.98 0.95

Healthy 0.99 1.00 1.00 0.99 1.00

Yellow Rust 0.97 0.99 0.99 0.98 0.98
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The model’s general superiority in class discrimi-
nation is shown by the Receiver Operating Charac-
teristic (ROC) curves, which are displayed in Fig.  11. 
Most classes had Area Under the Curve (AUC) val-
ues more than 0.99, and several, such as important 
crop diseases, had perfect AUC values of 1.00. This 
demonstrates the model’s exceptional capacity to 
confidently differentiate between several disease clas-
sifications. In conclusion, the method demonstrates 
high accuracy and reliable classification performance 
across the frequently occurring plant diseases in com-
monly cultivated crops in Bangladesh, showcasing its 
applicability within the defined scope of this study. 

Notwithstanding modest difficulties in a few low-rep-
resentation classes, the approach works well for classi-
fying plant diseases on a wide scale, opening the door 
for useful applications in agriculture.

Handling class imbalance in disease classification
When certain classes contain an excessive amount of 
samples, this is known as class imbalance and can cause 
the model to be biassed in favour of the over-repre-
sented classes. In addition to over-represented classes 
like Tomato Bacterial Spot and Corn Common Rust, 
which contained substantially more samples than other 
illnesses, we also encountered imbalance in our study 

Fig. 11  Receiver operating characteristic (ROC) curve
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from under-represented classes like Rice Leaf Smut and 
Eggplant Insect Pest Disease. Predictions may become 
skewed as a result of the model favouring the over-rep-
resented classes due to this imbalance.

In order to address this imbalance, we used data aug-
mentation methods including colour jittering, flipping, 
and rotation to broaden the variety of the minority 
classes, which improved the model’s ability to generalise 
about these uncommon illnesses. The model’s capacity 
to identify under-represented illnesses was enhanced by 
these methods, as seen by the confusion matrix, which 
shows fewer False Negatives for these classes.

The impact of our class imbalance strategies is dem-
onstrated in Fig. 12, where the model performs well for 
the majority classes, correctly predicting 775 cases of 
Tomato Yellow Leaf Curl Virus and 188 cases of Corn 

Common Rust, highlighting the model’s ability to detect 
common diseases by utilizing the large amount of data 
available for these classes. Crucially, the model also 
performs better on minority classes with fewer sam-
ples, including EggPlant Insect Pest Disease (15 accu-
rate predictions) and Cauliflower Downy Mildew (22 
accurate predictions), demonstrating the effectiveness 
of class weighting and data augmentation techniques in 
improving the model’s capacity to detect under-repre-
sented diseases, even with limited data.

The performance shows a notable increase over train-
ing without these balancing strategies, even though the 
prediction accuracy for minority classes is still some-
what worse than that for majority classes. Overall 
misclassification rates are still low, despite occasional 
uncertainty for some classes, including Tomato Bacte-
rial Spot. This illustrates the model’s improved ability 

Fig. 12  Confusion Metrices for the Classification Model
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to control class imbalance, which allows it to more pre-
cisely generalize across both common and uncommon 
plant disease types.

Interpretability with grad‑CAM
Grad-CAM was used to create visual heatmaps that 
shed light on the areas that PlantCareNet predicted were 
most important. These heatmaps employ colour gradi-
ents, where areas of greater significance are indicated by 
warmer tones (orange, red), and those of lesser impor-
tance by cooler tones (blue, green). In order to verify the 
interpretability and robustness of the model, the visuali-
sations correlate the highlighted areas with either healthy 
or known disease-specific properties.

The heatmap for Cauliflower Downy Mildew in Fig. 13a 
precisely focusses on disease-specific regions by high-
lighting distinctive fungal patches in warm tones. Simi-
larly, Cauliflower Bacterial Spot Rot is shown in Fig. 13b, 
where bacterial lesions are accurately localised by vivid 
colour zones, demonstrating the model’s capacity to 
properly identify infection patterns. Wheat Brown Rust is 
shown in Fig. 13c, where the heatmap corresponds with 
rust pustules, confirming PlantCareNet’s ability to iden-
tify subtle but physiologically significant disease signals.

On the other hand, Fig. 13d depicts a healthy aubergine 
leaf with a uniform distribution of cooler tones, indicat-
ing that there are no signs of illness. This demonstrates 

how the model can prevent false positives while still 
accurately recognising healthy samples. With an empha-
sis that corresponds with domain expertise, these visu-
alisations demonstrate PlantCareNet’s reliability and 
guarantee precise categorisation of both healthy and 
sick samples. The method highlights physiologically sig-
nificant characteristics that are essential for plant health 
diagnostics, hence enhancing the model’s usefulness in 
practical agricultural applications.

Grad-CAM was used to generate visual heatmaps of the 
regions that had an impact on the predictions made by 
the model. This was done in order to validate the central 
focus of the model and improve its interpretability. These 
heatmaps revealed that the model is able to correctly find 
disease-specific spots on plant leaves, as indicated by the 
domain knowledge. The Grad-CAM visualisations, which 
are displayed in Fig.  13, provide evidence that Plant-
CareNet focuses on the ill zones, hence demonstrating 
its dependability for disease classification. One example 
is the heatmap shown in Fig.  13a, which highlights the 
places on the leaf surface that are damaged by mildew. 
This heatmap demonstrates the thorough attention that 
was paid to diseased areas. By accurately recognizing the 
peculiar elongated lesions that are characteristic of Corn 
Northern Leaf Blight, as shown in Fig.  13b, the model 
guarantees that interpretation of the forecasts is of the 
highest possible quality.

Fig. 13  Attention Heatmaps Generated by Grad-CAM
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Comparative analysis
PlantCareNet is a very good option for real-time plant 
disease detection in resource-constrained contexts 
because of its higher classification performance and com-
putational economy when compared to top deep learn-
ing models. In addition to computational aspects like 
parameter count and inference-time, which are crucial 
for on-device deployment, this study included important 
metrics including accuracy, precision, recall, F1-score, 
and loss.

As illustrated in Table  5, PlantCareNet outper-
formed well-known models like ResNet50 (94%) and 
DenseNet121 (89%), achieving the greatest accuracy 
of 97%. Additionally, it showed strong precision (97%), 
recall (97%), and F1-score (97%), guaranteeing accurate 
plant disease detection across a range of classes. Lastly, 
models like MobileNetV3Small and MobileNetV3Large 
struggled with F1-scores below 55% and showed much 
lower accuracies of 51% and 54%, respectively, suggesting 
limited application for accurate disease classification in 
actual agricultural contexts.

This table compares the performance of various deep 
learning models, with bold values highlighting the best-
performing values for each metric. With an average 
inference time of under 0.0021 s and a parameter count 
of just 5 M, PlantCareNet is doing well in terms of effi-
ciency, outpacing ResNet50, which has a slower infer-
ence time (0.1956s) and a much higher parameter count 
(24.9M), while maintaining high accuracy. PlantCareNet 
also has a smaller model size of 19.2 MB compared to 
ResNet50’s 95.05 MB, making it more suitable for devices 
with limited storage. On the other hand, models with 
fewer parameters, such as MobileNetV3Small (1.5M 
parameters) and MobileNetV3Large (3.7M parameters), 
struggle with accuracy, achieving only 51% and 54% 
accuracy, respectively, along with low F1-scores. These 
lightweight models, while fast, significantly compro-
mise accuracy, making them less suitable for real-world 

applications where precise disease detection is essential. 
PlantCareNet, with its balance of speed, efficiency, and 
high accuracy stands out as a very good choice for on-
device, real-time plant disease detection.

The ability of PlantCareNet to combine outstanding 
predictive capability with a lightweight design is what 
makes it unique. For example, it achieves better clas-
sification metrics, such as a 13% higher accuracy and a 
shorter inference time, while matching MobileNetV2’s 
(5  M) parameter count. For end users in distant agri-
cultural areas, this optimisation guarantees that Plant-
CareNet is not only accurate but also highly adaptive to 
mobile and embedded devices, allowing for quick and 
trustworthy forecasts.

PlantCareNet’s capacity to tackle important issues in 
agricultural technology is demonstrated by its excellent 
accuracy, computational efficiency, and adaptability to 
low-resource conditions. It establishes a new standard for 
using deep learning models in smart agriculture by pro-
viding cutting-edge performance while still being light-
weight and quick, enabling efficient disease management 
and boosting output in practical situations.

We compared parameters, model size, and inference 
time to assess model efficiency in addition to classifica-
tion accuracy. PlantCareNet is appropriate for implemen-
tation on mobile devices with limited resources since it 
provides excellent accuracy with a reduced model size 
and faster inference time. Compared to bigger models 
like ResNet50 and InceptionV3, which are accurate but 
less suited for on-device inference, this efficiency offers a 
substantial advantage. The findings highlight how Plant-
CareNet offers the best possible mix between computing 
economy and performance, which makes it perfect for 
detecting plant diseases in agricultural settings with lim-
ited resources.

Table 5  Performance Comparison of Various Models

Model Name Acc. Prec. Rcl. F1 Score Loss #Par Mod. Size (mb) Avg. Inf. Time

ResNet50 [62] 0.94 0.94 0.94 0.93 0.015 24.9M 95.05 0.1956 sec

InceptionV3 [63] 0.79 0.82 0.77 0.79 0.032 23M 88.24 0.2706 sec

MobileNetV2 [64] 0.84 0.86 0.84 0.85 0.024 5M 12.19 0.0130 sec

MobileNetV3Large [65] 0.54 0.63 0.47 0.54 0.064 3.7M 14.4 0.0147 sec

MobileNetV3Small [65] 0.51 0.67 0.41 0.49 0.067 1.5M 5.78 0.0111 sec

NasNetMobile [66] 0.80 0.85 0.75 0.79 0.614 6.7M 19.4 0.0594 sec

DenseNet121 [67] 0.89 0.86 0.88 0.88 0.019 9M 29.92 0.0382 sec

ResNet152V2 [68] 0.84 0.87 0.81 0.84 0.51 59.6M 227.59 0.05 sec

PlantCareNet 0.97 0.97 0.97 0.97 0.09 5M 19.2 0.0021 sec
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Performance of the recommendation system
The suggestion system was designed using a user-centred 
approach to improve plant disease control. Two main 
image input choices are included on the app’s homepage: 
users can upload an existing image from their device 
storage or use their smartphone’s camera to take a real-
time picture of a plant. A smooth and accessible experi-
ence is guaranteed for all users thanks to user-friendly 
dropdown menus that also let users select the crop type 
and operating mode, such as LLM Mode or Ref Mode. 
With these characteristics, the app should be useful and 
flexible enough to meet the demands of a wide range of 
users, including farmers and agricultural professionals.

As shown in Table 6, the mobile application performs 
effectively across a number of important parameters. 
The application guarantees seamless operation even on 
devices with limited resources thanks to its optimized 
memory consumption (38–40 MB in the background 
and 89–92 MB when active) and launch time of roughly 
1.5 s. Extended use is made possible by the battery’s 0.6 
mAh per minute use, and its low data usage (about 0.35 
MB per response) makes it ideal for locations with spotty 
network coverage. The average reaction time from app 
launch to obtaining results is 23  s for LLM mode and 
14 s for Ref mode, allowing for quicker decision-making. 
This performance guarantees that farmers get fast, crop-
specific insights that can be put to use. In Ref mode, the 
app provides tailored solutions for diseased crops and 
pertinent, crop-specific information on symptoms, pre-
ventative actions, and remedies for healthy crops. These 
figures show that the app is not only effective but also 
very responsive, which makes it a useful resource for 
farmers looking for trustworthy, up-to-date advice on 
managing diseases.

Ref Mode and LLM Mode in the application have 
diverse functions in providing recommendations for 
managing plant diseases, each of which is customised 

to meet the demands of a particular user. Ref Mode uses 
a static methodology in which predetermined data is 
retrieved from a reliable database after the illness class 
has been determined through image classification. Each 
disease’s standard set of data is included in this database, 
giving users information on symptoms, ways to prevent 
them, and basic treatment recommendations. This mode 
is appropriate for people looking for rapid, generalised 
insights because it is simple and provides dependable, 
consistent information based on the diagnosed condi-
tion. Whereas, LLM Mode uses GPT-powered features to 
provide more individualised, real-time recommendations 
by introducing a dynamic, context-aware layer. Following 
the diagnosis of the disease, the mode adjusts according 
to the crop’s state, which is briefly explained at the start 
of the mode. LLM Mode offers proactive, preventative 
guidance for healthy crops with the goal of maintaining 
crop health. On the other hand, the system provides a 
thorough analysis of crops displaying illness symptoms, 
complete with symptom descriptions, customised pre-
ventative plans, and more focused treatment choices. 
The adaptability of this mode guarantees that the rec-
ommendations are not only pertinent but also sensitive 
to the particular circumstances of the user’s crop, pro-
viding a more thorough and dynamic approach to plant 
disease control. The two modes work together to create 
a complementary framework that meets both immediate 
and in-depth user needs in plant disease management. 
Ref Mode provides reliable, predetermined information, 
whereas LLM Mode expands the system’s capabilities 
with clever, context-aware recommendations. A compre-
hensive overview of the key features and functionality of 
the mobile app for plant disease detection and manage-
ment in Fig. 14.

Ref Mode offers standard symptoms, preventative, and 
treatment guidelines along with static, programmed sug-
gestions based on disease classification. On the other 
hand, LLM Mode incorporates the most recent treat-
ment possibilities and provides dynamic, real-time, con-
text-specific recommendations. Consequently, compared 
to Ref Mode, LLM Mode provides more up-to-date and 
customised guidance, making it better suited for chang-
ing plant disease situations. This two-mode technology, 
which offers both highly customised suggestions and 
quick reference insights, ensures the platform’s adapt-
ability. The software’s user-friendly interface makes it a 
valuable tool for farmers and agricultural specialists to 
effectively control crop health.

Mobile application performance analysis
To assess PlantCareNet’s overall efficiency and user expe-
rience, a rigorous performance comparison was carried 
out against three existing plant disease detection systems. 

Table 6  Performance Metrics of the Mobile Application

Category Metric Details

Performance Load Time ∼1.5 seconds

Memory Usage Background State 38–40 MB

Active State 89–92 MB

App Size 63 MB

Battery Consumption 0.6 mAh (per minute)

Data Consumption ∼0.35 Mb (per response)

Upload Time Average Upload Time ∼ 5 seconds

Capture Time Average Capture Time ∼ 9 seconds

Response Time LLM Mode 23 seconds

Ref Mode 14 seconds
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Fig. 14  Demonstration of the Recommendation System Outputs

Table 7  App Performance Comparison

Apps Cache Resumption App Size Avg. Load Time Network Usage 
(Mb/Min)

RAM Usage(MB) 
(Est.)

CPU 
Usage (%) 
(Est.)

Agrio 243mb 109 mb 2.64 26.07 300–500 15–30

Plantix 103mb 63.4 mb 1.66 0.81 250–400 10–25

Plant Parent 213mb 258 mb 3.8s 5.07 350–600 20–35

PlantCareNet 129mb 70.4 mb 1.45s 0.65 180–350 8–20
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In order to shed light on how PlantCareNet stacks up 
against other industry-leading programs, this research 
focuses on important parameters including app size, load 
time, network usage, memory consumption, and CPU 
utilization. These critical performance metrics are sum-
marized in the Table 7.

The comparison demonstrates PlantCareNet’s advan-
tages in terms of effectiveness and resource usage. It is a 
great option for those with limited storage because of its 
modest size (70.4MB), which is much less than PlantPar-
ent (258MB) and Agrio (109MB). PlantCareNet strikes 
a mix between compactness and higher performance 
in other areas, despite Plantix having the lowest size at 
63.4MB. With an average load time of 1.45  s, Plant-
CareNet outperforms both PlantParent (3.8 s) and Agrio 
(2.64 s) in terms of speed, improving the user experience 
by detecting diseases more quickly. It also has outstand-
ing network efficiency, using only 0.65MB per minute, 
which makes it the most data-efficient of the apps under 
comparison. Users in areas with expensive or restricted 
data plans will especially benefit from this.

PlantCareNet is built for improved resource manage-
ment in addition to storage and data economy, guaran-
teeing consistent performance across a range of devices. 
It works more efficiently than PlantParent (350–600MB) 
and Agrio (300–500MB), with an estimated RAM utili-
zation of 180MB to 350MB, which makes it appropriate 
for smartphones with low memory. Its CPU utilization 
stays low (between 8–20%), which lessens the burden 
on the device as a whole and improves battery efficiency. 
Furthermore, the application’s cache resumption func-
tion minimizes needless data reloads by enabling smooth 
work continuation. PlantCareNet provides a more bal-
anced and user-friendly experience than Agrio, which 
has a much greater network usage (26.07MB/minute). 
As a result, it is a sensible option for a larger spectrum of 
customers.

Evaluation of similarity between expert 
and LLM‑generated outputs
In order to assess the degree of similarity between the 
system-generated outputs and expert-curated recom-
mendations-which were regarded as the reference mode-
a comparison study was carried out using two significant 
dimensions: Terminology Similarity and Content Simi-
larity. The system-generated outputs were evaluated 
against the ideal circumstance, which was the expert rec-
ommendations. In order to measure the semantic align-
ment between the reference and system-generated texts, 
content similarity was measured using Cosine Similarity 
and Jaccard Similarity. On the other hand, the Terminol-
ogy Similarity analysis focused on specialized vocabulary 

consistency, utilizing Overlap Coefficient and Term Fre-
quency Analysis.

Content similarity
When evaluating the overall semantic congruence 
between system-generated outputs and expert-curated 
suggestions, content similarity is essential. It calculates 
the degree to which the content of the two texts is simi-
lar. This makes it possible to assess the overall thematic 
resemblance despite the texts’ differing phrasing. Cosine 
Similarity and Jaccard Similarity, two popular techniques 
for determining Content Similarity, offer different but 
complimentary perspectives on how well the expert and 
LLM-generated texts agree.

Finding the cosine of the angle between two vectors, 
each of which represents a text, is how Cosine Similar-
ity operates. This method creates vectors based on the 
term frequency of each word in the document, where 
each word represents a dimension in a high-dimensional 
space. The following formula is used to calculate the 
cosine similarity:

where Ai and Bi represent the term frequencies of the 
words in the texts. The result of this calculation yields a 
value between -1 and 1, with a value closer to 1 indicating 
a high degree of semantic similarity. This method allows 
for a precise measure of how similar the overall context is 
between the two texts.

On the other hand, Jaccard Similarity calculates the 
percentage of phrases that are common between the two 
texts in relation to the total number of terms that are 
unique in both papers. The intersection of the term sets 
from the two texts and their union are compared using 
this approach. The following is the formula for Jaccard 
Similarity:

where A and B are the sets of unique terms in each docu-
ment. The Jaccard Similarity score goes from 0 to 1. By 
highlighting the similarities, this approach sheds light on 
how much language and concepts are shared. When com-
bined, these two measures provide a thorough assess-
ment of content similarity, encompassing both word use 
alignment and the texts’ overall thematic alignment.

Cosine Similarity =

∑

n

i=1 Ai × Bi
√

∑

n

i=1 A
2
i
×

√

∑

n

i=1 B
2
i

Jaccard Similarity =
|A ∩ B|

|A ∪ B|
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Terminology similarity
For Terminology Similarity, two additional metrics were 
employed: Overlap Coefficient and Term Frequency 
Analysis. This is essential for assessing the system’s ability 
to provide precise and reliable technical language, which 
is particularly critical when talking about specialist topics 
like plant diseases and their management techniques.

Taking the smaller of the two sets as the set size, the 
overlap coefficient calculates the percentage of words 
that are shared by the two sets. When evaluating the 
direct overlap in the usage of domain-specific vocabulary, 
this approach is especially helpful when the emphasis is 
on precise matches of technical words, such as illness 
names, infections, or therapies. The following formula 
may be used to get the Overlap Coefficient:

where |A| and |B| are the sizes of the sets of domain-spe-
cific terms in the expert and LLM-generated texts. This 
computation yields a number between 0 and 1, where a 
higher number denotes a larger percentage of common 
phrases. This statistic gives a clear indication of how 
comparable the two texts’ specialized language is.

Term Frequency Analysis assesses how frequently par-
ticular technical words occur in the documents produced 
by experts and LLMs. Key domain-specific words, such 
illness names, infections, and pharmacological thera-
pies, are taken into account in this method; a higher fre-
quency of matching terms indicates a higher degree of 
similarity. When evaluating the LLM’s ability to repro-
duce the expert’s regular use of technical terminology, 
this approach is very crucial. A higher overlap suggests a 
more accurate usage of specialist terminology. The Term 
Frequency score measures how frequently specific key 
phrases occur in both sets of text.

Together, these two metrics- Overlap Coefficient and 
Term Frequency Analysis-provide a thorough evaluation 
of how well the output produced by the LLM complies 
with the expert-curated technical vocabulary guidelines. 
To guarantee the correctness and dependability of the 
created material, they stress the need of using domain-
specific keywords correctly and consistently.

Similarity scores comparison
For a comprehensive evaluation, one disease from each 
crop group was selected to assess the similarity between 
expert-curated recommendations and system-gener-
ated outputs. The diseases chosen for this study include 
Cauliflower Downy Mildew, Corn Northern Leaf Blight, 
Rice Bacterial Leaf Blight, Wheat Brown Rust, Tomato 
Early Blight, Potato Early Blight, and Eggplant Mosaic 
Virus Disease. Table 8 presents the computed similarity 

Overlap Coefficient =
|A ∩ B|

min(|A|, |B|)

scores for these disease classes based on both content 
and terminology metrics. The table summarizes the Con-
tent Similarity and Terminology Similarity scores for 
each disease class, providing insights into the alignment 
between expert and LLM-generated outputs. The content 
similarity is evaluated based on the general meaning and 
structure of the recommendations, while terminology 
similarity focuses on the consistency of domain-specific 
terms used.

The findings from this evaluation show that the sys-
tem-generated outputs, based on ChatGPT, exhibit a 
high degree of similarity with expert recommendations, 
with an average Content Similarity score of 84.57% and 
an average Terminology Similarity score of 82.00%. This 
indicates that while LLMs can generate agricultural dis-
ease management advice that is semantically similar 
to expert knowledge, there is room for improvement, 
particularly in the consistency of technical terminol-
ogy. These results highlight the need for post-processing 
mechanisms to refine the domain-specific language used 
by LLMs, ensuring greater reliability and precision in 
automated recommendations for agriculture.

With a mean of 84.57%, the table shows that the Con-
tent Similarity scores vary from 80% to 89%, indicating 
a high degree of content alignment between the system-
generated outputs and the expert-curated suggestions. 
Although the system is proficient at employing domain-
specific language, there is still significant diversity in the 
precise vocabulary, especially when it comes to illness 
treatments and preventative strategies, according to the 
language Similarity ratings, which range from 77% to 86% 
(mean of 82.00%). These findings demonstrate the LLM’s 
strong capability in capturing both the overall content 
and technical terminology of agricultural disease man-
agement. While some variation in terminology exists, it 
suggests exciting opportunities for further enhancement, 

Table 8  Similarity Scores for Content and Terminology across 
Disease Classes

Classes Content 
Similarity (%)

Terminology 
Similarity 
(%)

Cauliflower Downy Mildew 88 85

Corn Northern Leaf Blight 80 79

Rice Bacterial Leaf Blight 84 81

Wheat Brown Rust 87 86

Tomato Early Blight 83 80

Potato Early Blight 81 77

Eggplant Mosaic Virus Disease 89 86

Mean 84.57 82.00
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aiming for even greater consistency and precision in the 
use of domain-specific language across various platforms.

Conclusions
This study addresses the essential issue of plant disease 
detection, which is a key barrier to attaining sustainable 
agriculture and global food security. Particularly in areas 
with limited resources, current solutions sometimes lack 
the accuracy, scalability, and pragmatism needed for real-
world deployment. In order to close this gap, we created a 
cutting-edge plant disease detection system that outper-
forms current algorithms in terms of accuracy and use-
fulness. The suggested method offers practical insights 
for illness identification and mitigation tactics by com-
bining a cutting-edge recommendation mechanism with 
an effective, lightweight AI model. This strategy makes 
cutting-edge technology accessible to farming communi-
ties with limited resources, allowing it to be adopted in a 
variety of agricultural contexts. In addition to improving 
detection skills, our technology acts as a link between AI 
advancements and their implementation in environmen-
tally friendly farming methods. In order to improve the 
recommendation framework and further optimize model 
parameters for increased computing efficiency, future 
research will concentrate on expanding the system’s 
capabilities through the integration of vision-language 
models, as well as exploring image quality assessment 
mechanisms to address low-quality inputs. Addition-
ally, the system will be further optimized for deployment 
on edge devices, allowing for on-device computations, 
faster response times, and reduced reliance on cloud-
based infrastructure. By doing this, we want to improve 
the system’s usability and suitability for use in changing 
agricultural settings. By providing farmers with accu-
rate, scalable, and easily available technology, our work 
advances the larger objective of sustainable agriculture 
and builds resilience in global food systems.
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