Skip to main content

Table 1 Comparison of the accuracy of different quantities of unlabeled data

From: DM_CorrMatch: a semi-supervised semantic segmentation framework for rapeseed flower coverage estimation using UAV imagery

Dataset (L/U)

Precision(actual/generated)

Recall(actual/generated)

IoU(actual/generated)

F1 score(actual/generated)

Accuracy(actual/generated)

30/300

0.921/-

0.923/-

0.875/-

0.922/-

0.922/-

30/600

0.939/0.936

0.936/0.932

0.884/0.882

0.937/0.934

0.937/0.934

30/900

0.945/0.942

0.948/0.940

0.893/0.886

0.946/0.941

0.945/0.940

30/1200

0.947/0.940

0.948/0.943

0.891/0.888

0.947/0.941

0.947/0.941

30/1500

0.948/0.938

0.951/0.942

0.893/0.885

0.949/0.940

0.947/0.940

  1. Bold values indicate the highest performance achieved when using 30 labeled images and 900 unlabeled images, suggesting that this configuration offers the optimal balance between segmentation accuracy and the image generation efficiency of the diffusion model