Skip to main content

Table 5 Comparison of different network evaluation indicators

From: DM_CorrMatch: a semi-supervised semantic segmentation framework for rapeseed flower coverage estimation using UAV imagery

Methods

Label images

Precision

Recall

IoU

F1 score

Accuracy

FLOPs (G)

Parameters (M)

Traditional Methods

Otsu Method

/

0.710

0.724

0.706

0.717

0.717

/

/

HSV(H)

/

0.673

0.775

0.615

0.719

0.719

/

/

K-means clustering

/

0.621

0.762

0.642

0.686

0.686

/

/

Color characteristics

/

0.794

0.838

0.780

0.815

0.815

/

/

Deep Learning Methods (fully supervised)

Unet

576

0.803

0.897

0.794

0.848

0.869

11.25

31.03

30

0.752

0.812

0.730

0.780

0.780

Pspnet

576

0.840

0.836

0.810

0.838

0.858

38.83

65.32

30

0.775

0.820

0.745

0.797

0.798

SegNet

576

0.795

0.840

0.810

0.817

0.824

16.88

45.78

30

0.743

0.799

0.728

0.769

0.771

Attention-UNet

576

0.830

0.910

0.845

0.868

0.876

12.23

33.28

30

0.780

0.835

0.765

0.807

0.808

Deeplabv3+

576

0.800

0.850

0.855

0.824

0.833

22.34

45.25

30

0.745

0.805

0.735

0.770

0.771

SegFormer

576

0.842

0.880

0.876

0.859

0.885

48.13

85.35

30

0.770

0.830

0.790

0.798

0.810

Swin-Unet

576

0.813

0.865

0.875

0.839

0.860

44.72

68.28

30

0.768

0.828

0.758

0.792

0.804

Deep Learning Methods (semi-supervised)

Augseg

30

0.911

0.924

0.853

0.917

0.920

26.07

59.55

Corrmatch

30

0.910

0.913

0.865

0.912

0.912

66.86

64.18

Unimatch

30

0.921

0.911

0.871

0.916

0.917

23.98

60.12

Fixmatch

30

0.900

0.909

0.842

0.904

0.905

23.94

59.50

DM_CorrMatch (without diffusion)

30

0.945

0.948

0.893

0.946

0.945

74.97

67.68

DM_CorrMatch (with diffusion)

30

0.942

0.940

0.886

0.941

0.940

84.54

76.78

  1. Bold values emphasize the base network, the Mamba module, and our proposed DM_CorrMatch method, respectively, and mark the best accuracy attained under each experimental condition