Methods | Label images | Precision | Recall | IoU | F1 score | Accuracy | FLOPs (G) | Parameters (M) |
---|---|---|---|---|---|---|---|---|
Traditional Methods | ||||||||
Otsu Method | / | 0.710 | 0.724 | 0.706 | 0.717 | 0.717 | / | / |
HSV(H) | / | 0.673 | 0.775 | 0.615 | 0.719 | 0.719 | / | / |
K-means clustering | / | 0.621 | 0.762 | 0.642 | 0.686 | 0.686 | / | / |
Color characteristics | / | 0.794 | 0.838 | 0.780 | 0.815 | 0.815 | / | / |
Deep Learning Methods (fully supervised) | ||||||||
Unet | 576 | 0.803 | 0.897 | 0.794 | 0.848 | 0.869 | 11.25 | 31.03 |
30 | 0.752 | 0.812 | 0.730 | 0.780 | 0.780 | |||
Pspnet | 576 | 0.840 | 0.836 | 0.810 | 0.838 | 0.858 | 38.83 | 65.32 |
30 | 0.775 | 0.820 | 0.745 | 0.797 | 0.798 | |||
SegNet | 576 | 0.795 | 0.840 | 0.810 | 0.817 | 0.824 | 16.88 | 45.78 |
30 | 0.743 | 0.799 | 0.728 | 0.769 | 0.771 | |||
Attention-UNet | 576 | 0.830 | 0.910 | 0.845 | 0.868 | 0.876 | 12.23 | 33.28 |
30 | 0.780 | 0.835 | 0.765 | 0.807 | 0.808 | |||
Deeplabv3+ | 576 | 0.800 | 0.850 | 0.855 | 0.824 | 0.833 | 22.34 | 45.25 |
30 | 0.745 | 0.805 | 0.735 | 0.770 | 0.771 | |||
SegFormer | 576 | 0.842 | 0.880 | 0.876 | 0.859 | 0.885 | 48.13 | 85.35 |
30 | 0.770 | 0.830 | 0.790 | 0.798 | 0.810 | |||
Swin-Unet | 576 | 0.813 | 0.865 | 0.875 | 0.839 | 0.860 | 44.72 | 68.28 |
30 | 0.768 | 0.828 | 0.758 | 0.792 | 0.804 | |||
Deep Learning Methods (semi-supervised) | ||||||||
Augseg | 30 | 0.911 | 0.924 | 0.853 | 0.917 | 0.920 | 26.07 | 59.55 |
Corrmatch | 30 | 0.910 | 0.913 | 0.865 | 0.912 | 0.912 | 66.86 | 64.18 |
Unimatch | 30 | 0.921 | 0.911 | 0.871 | 0.916 | 0.917 | 23.98 | 60.12 |
Fixmatch | 30 | 0.900 | 0.909 | 0.842 | 0.904 | 0.905 | 23.94 | 59.50 |
DM_CorrMatch (without diffusion) | 30 | 0.945 | 0.948 | 0.893 | 0.946 | 0.945 | 74.97 | 67.68 |
DM_CorrMatch (with diffusion) | 30 | 0.942 | 0.940 | 0.886 | 0.941 | 0.940 | 84.54 | 76.78 |